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Local All-Pass Geometric Deformations
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Abstract—This paper deals with the estimation of a deforma-
tion that describes the geometric transformation between two
images. To solve this problem, we propose a novel framework
that relies upon the brightness consistency hypothesis - a pixel’s
intensity is maintained throughout the transformation. Instead of
assuming small distortion and linearising the problem (e.g. via
Taylor Series expansion), we propose to interpret the brightness
hypothesis as an all-pass filtering relation between the two images.
The key advantages of this new interpretation are that no
restrictions are placed on the amplitude of the deformation or
on the spatial variations of the images. Moreover, by converting
the all-pass filtering to a linear forward-backward filtering
relation, our solution to the estimation problem equates to
solving a linear system of equations, which leads to a highly
efficient implementation. Using this framework, we develop a
fast algorithm that relates one image to another, on a local level,
using an all-pass filter and then extracts the deformation from
the filter—hence the name “Local All-Pass” (LAP) algorithm.
The effectiveness of this algorithm is demonstrated on a variety
of synthetic and real deformations that are found in applications
such as image registration and motion estimation. In particular,
the LAP obtains very accurate results for significantly reduced
computation time when compared to a selection of image regis-
tration algorithms and is very robust to noise corruption.

Index Terms—Geometric Deformations, Image Registration,
Motion Estimation, All-Pass Filters, Spline and piecewise poly-
nomial interpolation.

I. INTRODUCTION

THE estimation of the geometric transformation between

two images is a problem that has many applications

in image and video processing. For example, this problem

is core to fundamental tasks such as image registration [3],

image super-resolution [4] and video stabilization [5], and

has been utilised in areas such as biology [6], medical

imaging [7], remote sensing [8], fingerprint recognition [9]

and fluid flow measurements [10]. Specifically, the problem

comprises finding a transformation T based on the variation

of pixel intensities between the images. In this paper, rather

than parametric registration (e.g. [11], [12]), we consider non-

rigid image registration in which the geometric transformation

can be characterised by a pixel-wise deformation field u.

We solve this problem under the assumption that a pixel’s

C. Gilliam is with the School of Engineering, RMIT University, Australia,
and T. Blu is with the Department of Electronic Engineering, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong.
E-mail: dr.christopher.gilliam@ieee.org & tblu@ee.cuhk.edu.hk.

This work was supported in part by a grant #CUHK14200114 of the Hong
Kong Research Grants Council.

Aspects of this work have been presented at the IEEE International
Conference on Acoustics, Speech and Signal Processing 2015 [1] and IEEE
International Conference on Image Processing 2015 [2].

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes a
description of the synthetic data used in Section V and animations of the
registration results.

intensity remains constant under the deformation – known as

the brightness consistency hypothesis [13], [14].

Mathematically, the brightness consistency hypothesis can

be formulated as follows: given two 2D functions (i.e., images)

I1(x) and I2(x), find a deformation field u(x) that relates these

two images through

I2
(

x + u(x)
)

= I1(x), (1)

where x = (x, y)T is the pixel coordinates, u(x) =
(u1(x), u2(x))

T is a vector field and the transformation is

T (x) = x+u(x). This formulation is, however, both restrictive

and yet, at the same time, incomplete; the restrictiveness

stems from the fact that (1) is usually not satisfied exactly

(e.g., changes in illumination, sensor variation, atmospheric

distortion etc.). Whereas, it is incomplete because, due to

the dimensionality of u(x) (equivalent to two images), there

are many solutions to (1), most of them being meaningless;

i.e., the problem is ill-posed [15]. Obtaining a meaningful

deformation field is of particular importance in medical imag-

ing where singularities and non-invertibility can be physically

invalid [16].

In the registration literature, the approaches to solving

(1) comprise two main aspects [7], [17]: the deformation

model and the matching criteria. Starting with the first aspect,

deformation models can be roughly split into two groups. The

first are deformations derived from physical models such as

elastic body models [18], fluid flow models [19] and diffusion

based models (e.g. the Demons algorithm [20], [21]). These

models are non-parametric in nature thus allowing a per

pixel estimation for the deformation. The second group are

deformation models derived from approximation theory. One

popular example [22]–[26] is free form deformation whereby

the deformation field is represented using basis functions, such

as B-splines [27], at fixed integer grid positions. The advantage

of these types of models is that they are capable of describing

a wide range of transformations using a low/limited number of

parameters [7]. Another approach is to assume the deformation

can be approximated locally using a parametric model. A

classic example is the Lucas and Kanade algorithm [13]: The

brightness equation (1) is linearised using a first order Taylor

expansion under the assumption that the deformation is small.

Then, they approximated the deformation as constant over a

local region and estimated a constant vector u within such

regions. Their method results in a per pixel estimate of the

deformation field that can be non-rigid in nature. Note that

this linearisation also formed the basis of early work on optical

flow estimation [14].

Moving to the second aspect, the choice of matching criteria

can also be divided into two groups. The first group comprises

similarity measures based on the intensities of the images, e.g.

the sum of squared difference or mutual information [28],
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[29]. More recently, Myronenko and Song [26] proposed

minimising the number of basis functions that are required to

code the error between the two images. In contrast, the second

group focuses on matching features, such as SIFT points [30]

or biologically relevant landmarks [7], between the images.

In [8], this feature matching was used as an initialisation

to a non-rigid registration based on mutual information .

Along with these aspects, registration algorithms also place

constraints on the invertibility of the deformation field [7].

Under the brightness hypothesis, an implicit assumption is

that the deformation will warp image I2 to image I1, which

is true provided the transformation is invertible. This idea of

an invertible transformation is either enforced directly using

an inverse consistency constraint (e.g. local invertibility [31])

or by assuming a diffeomorphic transform [7], [32] in regis-

tration. For reviews of the state-of-the-art see [3], [7], [17].

The work presented in our paper is based on a novel

formulation of the brightness consistency constraint, which

changes the solving hypotheses quite substantially (e.g., arbi-

trary field amplitude, arbitrary spatial variations of the images).

In contrast to the linearisation performed in [13], we express

the left-hand side of (1) as a spatial filtering equation. The

novelty does not lie in this structural property (exploited in the

literature on image registration by [33]), but in the following

observation: in the case where the field u(x) is constant, this

filtering formulation is exact and the spatial filter involved

is all-pass [1]. When the deformation field is not constant

but nonetheless slowly varying, the all-pass filtering relation

between the images I1 and I2 is still “locally” valid up to

a very good approximation. Given this local all-pass filter,

we then apply a simple formula which provides an accurate

estimate of the local displacement vector.

The key algorithmic idea in our paper is based on a forward-

backward representation of all-pass filters: when I2 is obtained

by all-pass filtering of I1, it can equivalently be stated that ad-

equate “forward” filtering of I1 results in “backward” filtering

of I2. There are no limitations on the nature of this forward

filter, and the backward filter is simply the reversed version

of the forward one. Thus, by using this representation, we

can convert the non-linear all-pass constraint into a linear one

when applied to (1). Accordingly, assuming the deformation

is constant within a local region, we can solve the all-pass

estimation problem very efficiently by solving a linear system

of equations.

A. Relation to Prior Art

There are three main links between our work and prior art.

First, similar to Lucas and Kanade, we assume the deformation

field is locally constant and formulate an algorithm based on

solving a linear system of equations. However, it is important

to stress that our framework does not require the additional

assumption of small displacement; it can handle arbitrary

sized displacements. Consequently, we do not require the

Taylor approximation used in [13]. Moreover, in spite of using

the same local constancy hypothesis, we obtain a consistent

estimate of the deformation which contrasts with the usually

inconsistent results obtained when applying the algorithm

in [13]. Note that other local parametric models have been

considered, e.g. local affine models [34], [35].

The second link is the use of spatial filtering in relation

to the brightness consistency hypothesis. In general, the aim

of this filtering in the literature has been to modify the

properties of the hypothesis [36]. For example, Gaussian pre-

filtering is used to reduce its sensitivity to noise [37] whereas

higher order image derivatives are used to enforce illumination

invariance [37]. More recently, the authors in [38] and [39]

considered the optimal design of the pre-filters used in the

Taylor linearisation proposed in [13]. In contrast, we depart

from this idea of modifying the brightness hypothesis via fil-

tering. Instead, we propose re-formulating the hypothesis itself

as an all-pass filtering relationship and extract the deformation

field from the corresponding filter. This relationship is then

localised such that we obtain a local all-pass filter for every

pixel and hence a dense, locally varying, deformation.

The final link is to a group of algorithms that estimate the

deformation field based on the phase content of the images. A

classic example is the estimation of a global translation and

rotation using the finite Fourier transform [40]. Taking this

idea further, Fleet and Jepson [41] proposed a spatio-temporal

filtering approach to estimate the deformation. Their technique

involved estimating the spatio-temporal Fourier phase of a

sequence of images, via a bank of Gabor filters, and then

using the variation in this phase to estimate the deformation.

In this paper, however, we estimate spatial filters, per pixel,

between two images and extract the deformation field from

these filters (do not require a pre-defined filter bank).

On a last note, it is worth discussing the difference between

image registration and optical flow estimation. The registra-

tion problem focuses on estimating a geometric deformation

between two images. This deformation can then be used to

either align the images (e.g. motion correction, image fusion),

measure the geometric distortion of the imaging system [17]

or analyse the change between the images [8]. For all of these

tasks, a key element is that the deformation will warp image

I2 to image I1, which is true provided the field is invertible

(locally). In contrast, the optical flow problem focuses on the

estimation of a 2D motion field that describes the movement

of 3D objects that have been projected onto a 2D image.

Accordingly, a major challenge is the estimation of motion

discontinuities. These discontinuities result in non-invertibility

which invalidates the brightness hypothesis. One such example

is occlusions; the optical flow is undefined in occluded regions

as no mapping exists that warps I2 to I1 [42]. Thus, although

some similarities exist, image registration and optical flow

estimation are substantially different problems [43]. For a

review of modern optical flow estimation we refer the reader

to [36], [44].

B. Main Contributions and Outline

Using the idea of local all-pass filtering, we present a fast

filter-based algorithm for estimating smoothly varying defor-

mations, which we term the Local All-Pass (LAP) algorithm.

We evaluate the performance of this algorithm when solving

(1) in both ideal conditions (i.e. images that exactly satisfy
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Image 1 Image 2

Deformation Field

* h[k]   =

All-Pass

Fig. 1. Diagram illustrating the equivalence of a rigid deformation field with
constant displacement and filtering using an all-pass filter h[k]. Note that ∗
is the convolution operator and k = [k, l]T is the discrete pixel coordinates.

the brightness constraint) and when the images are corrupted

by noise. In comparison to a selection of image registration

algorithms, our algorithm exhibits the following advantages: a

large improvement in accuracy when estimating a deformation

in which the brightness constraint is exactly satisfied; a robust-

ness to violations of the brightness consistency caused by noise

corruption or illumination change; and a significant reduction

in computation time. We further demonstrate the versatility

and robustness of the LAP when estimating deformations that

occur in real images. In the context of the algorithm’s speed, it

is worth mentioning that the LAP is implemented using only

basic Matlab commands, i.e., no optimised C or pre-compiled

code, and this code is made available online1.

This paper builds upon preliminary ideas presented in the

conferences papers [1], [2] in the following ways: 1) We

bring together the theoretical concepts presented in [2] to

demonstrate how all-pass filters occur naturally from the

assumption of small displacement. 2) We expand upon the

iterative implementation of the LAP to enable it to cope with

violations of the brightness consistency hypothesis (e.g. noise).

3) We provide a thorough analysis of the performance of

the algorithm under varying image texture, violations of (1)

due to noise/illumination change, and when varying the rate

of change of the deformation field. We also demonstrate the

algorithm on a number of real applications. Note that a 3D

extension of the algorithm has also been presented in [45].

Finally, our paper is structured as follows: Section II details

the main ideas of our all-pass filtering framework. Next,

Section III describes the adaptation needed for this framework

to work on a local level. Then, Section IV is devoted to

additional processing techniques that are applied to the LAP

to improve its robustness under non-ideal conditions. Our

algorithm is then evaluated in Section V and Section VI shows

examples on real images. We conclude in the last section.

II. ALL-PASS FILTER FRAMEWORK

Instead of assuming the deformation is small (and that the

images have limited spatial variations), we shall assume the

deformation field is slowly varying such that it is locally

constant. The central concept is that a constant displacement

caused by a rigid deformation is equivalent to filtering with an

all-pass filter. Our framework thus consists of first estimating

1https://sites.google.com/site/cwsgilliam/LAP

Image 1 Image 2

* p[-k] 

Backward

Filter

Image 1 Image 2

* p[k]   = 0

Forward

Filter

* h[k]   = 0

All-Pass

Filter

Fig. 2. Diagram illustrating the equivalence between two filtering operations
in the pixel domain. This equivalence is due to the structure of the all-pass
filter h[k] defined in (5).

this all-pass filter and then extracting the displacement infor-

mation from the filter. In the following section, we detail the

mechanics of these procedures for the simplest case: a rigid

deformation field with constant displacement. We extend to

locally constant, slowly varying, deformation in Section III.

A. Main Principles of the All-Pass Framework

1) Shifting is All-Pass Filtering: We start by underlining

the equivalence between a rigid deformation with constant

displacement and all-pass filtering. Consider two arbitrary

images (i.e., no hypothesis on their spatial variations), I1
and I2, related by a constant displacement u = (u1, u2)

T
as

illustrated in Fig. 1. Assuming brightness consistency, we have

that image I2 is a shifted version of I1:

I2(x + u) = I1(x). (2)

In the frequency domain, this shifting relationship is equivalent

to

Î2 (ω) = Î1 (ω) e−juT
ω, (3)

where Î represents the Fourier transform of the image I and

ω = (ω1, ω2)
T denotes the frequency coordinates. Now, if we

define a filter h with a frequency response

ĥ (ω) = e−juT
ω, (4)

then we have that I2 is a filtered version of I1 and the filter

in question has the following properties:

• Separable: ĥ (ω) = ĥ1 (ω1) ĥ2 (ω2), where ĥ1 and ĥ2

are two 1D filters;

• Real: ĥ (ω) = ĥ∗ (−ω), where ĥ∗ represents the com-

plex conjugate of ĥ, hence the impulse response is real-

valued;

• All-Pass:
∣

∣ĥ (ω)
∣

∣ = 1.

An important observation from this analysis is that the

information relating to the deformation field is contained

within the phase of the all-pass filter h. Therefore, we propose

estimating the filter h as a proxy for the complex exponential

in (3).

To estimate this filter h, we need to move to the discrete

domain. Thus, assuming ideal sampling with a sinc kernel,
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we obtain a digital version of the filter h which is, again, all-

pass, and equal to the complex exponential (4) over the cyclic

frequency range ω ∈ ]−π, π] × ]−π, π]. Note that the other

properties of this digital filter are the same as those found for

the continuous version.

2) Rational Representation of All-Pass Filters: The

(2π, 2π)-periodic frequency response ĥ(ω) of any digital all-

pass filter can always be expressed as the ratio of the DFT

of two filters that have the same modulus, but opposite phase.

More specifically, for a real all-pass filter

ĥ (ω) =
p̂
(

ejω
)

p̂ (e−jω)
, (5)

where p̂
(

ejω
) def
= p̂

(

ejω1 , ejω2

)

is the forward and p̂
(

e−jω
)

the backward version of a real digital filter p. To verify this

property, it suffices to choose p̂(ejω) = exp
(

j arg(ĥ(ω))/2
)

and to use the Hermitian symmetry that characterizes real

filters; i.e., ĥ(−ω)∗ = ĥ(ω).
The importance of the representation in (5) is that the

all-pass filtering relation between two images, I1 and I2,

can be transformed into a forward-backward filtering relation

involving p. In other words, as illustrated in Fig. 2, the filtering

operation performed by h can be expressed linearly as a

function of p:

I2[k] = h[k]∗I1[k] ⇔ p[−k]∗I2[k]−p[k]∗I1[k] = 0, (6)

where k = [k, l]
T

is the discrete pixel coordinate. Therefore,

estimating the forward filter p in (6) is equivalent to estimating

an all-pass filter that approximates the filter h in (4).

3) Linear Approximation of the Forward Filter and its

Estimation: Using a standard signal processing technique, we

approximate the filter p as a linear combination of a few fixed,

known real filters pn. In other words, we propose a filter basis

representation:

papp[k] =

N−1
∑

n=0

cnpn[k], (7)

where N denotes the number of filters in the basis and cn are

the coefficients of the filters. The benefit of this representation

is that the estimation of the all-pass filter h is reduced to

determining the N linear coefficients {cn}n=0,...,N−1. Note

that, although we lose (in general) the separability property

by making this approximation, we still preserve the real, all-

pass properties of the filter h.

A consequence of the linear approximation of the filter

p by (7) is that its estimation can be achieved using a

straightforward mean square minimization of (6) over the

coefficients cn. Such a minimization is equivalent to solving

an N × N linear system of equations, which, provided N is

small, is very fast and efficient.

4) Choosing a Good Filter Basis: Having formulated the

approximation of the all-pass filter, the question now becomes

what type of filters should be used in (7)?

A naive choice is the canonical representation of finite

impulse response (FIR) filters, supported in a square of side

2R + 1: p̂n
(

ejω
)

= e−jω1kne−jω2ln where kn, ln are all

the integers in [−R,R]. However limiting the support of

the forward filter implies limiting the displacement of the

deformation to a maximum of R pixels. Accordingly, the

canonical FIR representation quickly becomes too expensive

for estimating large scale deformations (e.g., for a deformation

of displacement R pixels then N ∝ R2). Thus, we require a fil-

ter basis that has the two following properties: 1) Compactness

- N is small compared to the number of pixels in the image

so as to avoid overfitting and find a meaningful solution to

the estimation problem. 2) Independence - N is independent

of the size of displacement R so the filter basis can easily be

scaled to estimate large displacement.

Our first approach to constructing such a filter basis was

empirical; given an image I , we shifted the image using a

set of know displacements vectors, whose amplitude remained

the same but the direction varied from 0 to 360 degrees, and

estimated the corresponding FIR filter p that satisfied (6).

Once completed, we performed singular value decomposition

(SVD) on the set of filters and took the first N eigenvectors,

corresponding to the largest eigenvalues, to be the filter basis

papp. Thus, by choosing a small value for N we satisfy

the compactness property. However, although this approach

resulted in an optimum basis for I and that it seemed to be

largely independent of the images [1], its disadvantage was

that the basis needed to be recomputed if the size of the filters

changed (i.e. it did not satisfy the independence property).

Interestingly however the filters obtained from this empirical

method were generally well approximated using a Gaussian

filter and its derivatives. Accordingly, we propose using a filter

basis that spans the derivatives of a Gaussian function. To

avoid having to estimate too many filter coefficients, we shall

consider only two situations: i) Setting K = 1 (i.e. using

only the first differentials), which equates to N = 3 filters. ii)

Setting K = 2 (allowing both first and second differentials),

which extends the basis to N = 6 filters. The discrete filters

in question are

K = 1



















p0[k] = exp

(

−
k2 + l2

2σ2

)

p1[k] = k p0[k]

p2[k] = l p0[k]

p3[k] = (k2 + l2 − 2σ2) p0[k]

p4[k] = kl p0[k]

p5[k] = (k2 − l2) p0[k]















































K = 2 (8)

where σ = (R + 2)/4 and R is the—integer—half-support

of the filters. An important advantage of these filters is that

they can easily be scaled to estimate larger deformations by

changing the value of R. Thus the Gaussian filter basis satisfies

both the compactness and independence properties that we

require.

Now, although we arrived at this Gaussian filter basis

empirically, there is a theoretical foundation to underpin this

choice of basis. In [2], we examined the quality of approxima-

tion obtained when approximating the brightness consistency

using (6). In particular, by using a Padé approximation, rather

than a Taylor approximation, we showed that to obtain an

approximation order of L (which is always even) the basis

filters should comprise the derivatives, up to order K = L/2,
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of an isotropic function. As a consequence, by using K = 1
the filter basis can achieve an approximation order of 2 (see

Section II-B below) -the equivalent approximation order using

a Taylor expansion would require second order derivatives- and

using K = 2 results in an approximation order of 4.

5) From All-pass Filters to Deformation Vectors: The final

piece of the framework is to retrieve the deformation from the

estimated all-pass filter hest. Since we expect the frequency

response of the estimated filter, ĥest(ω), to be close to (4), we

propose the following formula

u1,2 = j
∂ log

(

ĥest(ω)
)

∂ω1,2

∣

∣

∣

ω1=ω2=0
.

Given the frequency response of the all-pass filter in (5), the

above formula has the following simple expression in terms

of the impulse response of the filter p:

u1 = 2

∑

k k p[k]
∑

k p[k]
and u2 = 2

∑

k l p[k]
∑

k p[k]
, (9)

where the summations are over all the multi-indices k =
(k, l) ∈ Z

2. The above expressions were shown to be very

accurate in [1].

B. Relation with Lucas-Kanade Approach - All-Pass Filters

from Small Displacement Hypothesis

For this subsection only we shall assume the small displace-

ment hypothesis and show how all-pass filters also naturally

arise from this viewpoint. Using a first order Taylor expansion,

the brightness consistency constraint can be replaced by an

approximation where the deformation field coordinates are

involved linearly [13]

I2 (x) = I1 (x− u) ≈ I1(x)− uT∇I1(x), (10)

where ∇ = [∂/∂x, ∂/∂y]
T
. The advantage of the small

displacement hypothesis is that the resulting approximation

holds even if u is (possibly fastly) varying. When u is constant,

this equation is equivalent to I2 = h0 ∗ I1 where h0(x)
is a continuous filter whose Fourier transform is given by

ĥ0(ω) = 1−juT
ω. Although this filter is not all-pass, it is the

first order approximation (assuming u is small) of the all-pass

filter (4).

Next, let us consider a symmetrical variant of the brightness

consistency constraint -both images are shifted towards each

other by half the full displacement- and perform a first order

expansion on both images:

I2

(

x +
u

2

)

= I1

(

x−
u

2

)

⇓

I2(x) +
1

2
uT∇I2(x) ≈ I1(x)−

1

2
uT∇I1(x)

(11)

Again, this approximation holds even if u is not constant. Now,

when u is constant, the relation between I1 and I2 is still a

spatial convolution I2 = h1 ∗ I1 however the filter involved is

all-pass

ĥ1(ω) =
1− juT

ω/2

1 + juT
ω/2

.

Image 1 Image 2

Deformation Field

Local All-Pass

Filter

Fig. 3. Diagram illustrating that a smoothly varying deformation field between
image 1 and image 2 can be approximated in a small region using a local
all-pass filter. In this small region, the deformation between image 1 and 2 is
equivalent to a convolution with an all-pass filter.

This is, in fact, a second order Padé approximation2 of the all-

pass filter (4), as we have shown in [2]. Moving this equation

to the discrete domain unveils the formal identity with (6).

Accordingly, by using the above interpretation, we observe

that attempting to minimise (10) directly, as in [13], is equiv-

alent to trying to find any filter that fits I1 to I2. In contrast,

performing the same minimisation on (11) is constrained so

that only all-pass filters are considered. Consequently, the

result is more likely to equate to a shifting operation (i.e. a

valid deformation field).

This interpretation can be further developed so as to build

approximations of the brightness consistency constraint that

have increasing orders of accuracy. We have investigated this

generalization in [2] by using a Padé approximation of the

complex exponential function (4) with equal numerator and

denominator order [46].

III. ESTIMATING SMOOTHLY VARYING DEFORMATIONS

We now relax the restriction of global constancy and allow

the deformation field to vary in a slow, smooth manner. To

estimate such a deformation, we propose a local adaptation

to our framework based on the idea that the deformation can

be considered as locally constant. Therefore, we can relate a

local region in one image, I1, to the same corresponding region

in another image, I2, using an all-pass filter; an illustration is

shown in Fig. 3. Accordingly, we have a Local All-Pass (LAP)

algorithm to estimate the deformation field. The mechanics of

this algorithm are detailed as follows.

A. Obtaining Local All-Pass Filters

In order to estimate a local all-pass filter per pixel, we

formulate a local version of the relation in (6) over a window

W of size (2W + 1) by (2W + 1) pixels. This new relation

is termed the local all-pass equation and defined as follows:

papp[k] ∗ I1[k] = papp[−k] ∗ I2[k], where k ∈ W, (12)

where papp[k] is the approximation of the FIR filter using

the Gaussian filter basis. Note that the half-support of papp is

limited to R ≤ W .

2The error between the lhs and the rhs of the approximation in (11) is
o(‖u‖2).
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Now, to estimate the local filter papp[k], we opt to minimize,

in the L2 sense, the difference between the left and right sides

of (12) under the constraint that p satisfies (7); i.e., if we use

the notations q̌[k]
def
= p[−k] and 〈J〉W

def
=

∑

k∈W J [k], then

we have to minimize the following expression, quadratic in cn

min
{cn}

〈

|papp ∗ I1 − p̌app ∗ I2|
2
〉

W

where papp[k] = p0[k] +

N−1
∑

n=1

cnpn[k].
(13)

The local filter obtained from this minimization corresponds to

the central pixel in W . An interesting point raised in the review

process of this paper is that the estimation of these coefficients

could be posed using other penalty terms. For example, Senst

et al. [47] proposed a modern update for the Lucas-Kanade

algorithm that used robust penalty terms when estimating the

displacement vector. A similar approach could be considered

in (13) however we leave that as a topic for future research.

Once we have obtained an estimate of the filter from the

minimization in (13), we can then shift the window W and

repeat the process for a new local all-pass filter. Based on

this concept, we have the LAP algorithm - estimate a local

all-pass filter for every pixel in the image, then, using these

filters, extract an estimate of the deformation field according to

(9). The process is briefly summarized in Algorithm 1. Notice

that there are three parameters for the LAP algorithm: W , the

half-width of the window W , R, the half-support for the filters

and K, the maximum derivative order of the filter basis.

Although similar to the formulation by Lucas and

Kanade [13], this LAP algorithm has two important advan-

tages: first, as established in [2], for small displacements the

order of approximation is twice that of the Taylor expansion

(10). Second, by changing the size of the window, the al-

gorithm can easily scale to match the displacement of the

deformation (remember that R acts as the upper bound on the

displacement). Therefore, the LAP algorithm is not restricted

to deformations of small displacements.

1) Implementation Details: The minimum of (13) satisfies

the following equations, linear in cn:

0 = 〈(pn ∗ I1 − p̌n ∗ I2)(p0 ∗ I1 − p̌0 ∗ I2)〉W

+

N−1
∑

n′=1

cn′ 〈(pn ∗ I1 − p̌n ∗ I2)(pn′ ∗ I1 − p̌n′ ∗ I2)〉W ,

for n = 1, 2, . . . , N − 1.

Now, the 〈·〉W operator is nothing else than a filter (the

invariant shape of the region W is shifted by integer values).

Hence, the coefficients of cn′ in the equations above can be

computed by performing convolutions (fast). Finally, solving

for the cn at every pixel can be obtained, either using an

explicit formula, or by Gauss elimination, both approaches

involving only pointwise operations. These observations are

the key to a fast implementation of the LAP algorithm.

B. Comparison with the Lucas-Kanade Algorithm

In contrast to Lucas-Kanade [13], the LAP algorithm de-

scribed above is able to provide a very consistent and accurate

Algorithm 1: Local All-Pass (LAP) estimation of a

deformation field
Inputs: Images I1 and I2, window size W , filter size R and

number of filters N
1 Initialisation: Given a value of R and N , generate the basis

filters described in (8). Note that σ = (R+ 2)/4;
2 Filter Estimation: Using the filter basis, solve the

minimisation defined in (13) for each pixel in I1 for a
given local window of size (2W + 1) by (2W + 1), details
in Section III-A1;

3 Extraction: Using the set of filter coefficients, calculate the
deformation for each pixel in the image using (9);

(a) Input Image (b) Ground Truth

(c) LAP, K = 1 (d) LAP, K = 2

(e) Lucas-Kanade [13] estimate (f) Field Coding

Fig. 4. Diagrams comparing the consistency of the raw LAP algorithm
(without any pre/post processing) and the Lucas-Kanade algorithm [13] when
estimating a constant, rigid, deformation field. The input image, (a), is
synthetically deformed using the ground truth deformation shown in (b). The
displacement of the deformation is 1 pixel. Note that (e) illustrates the colour
coding for the deformation field (each colour represents a different direction
of the deformation).

deformation. To demonstrate this performance, we show in

Fig. 4 the estimate of a constant deformation field obtained

using the raw LAP, no pre/post-processing, and the equivalent

obtained by the Lucas-Kanade algorithm [13]. To allow a fair

comparison, the displacement of the deformation is 1 pixel,

thus ideally suited for the Lucas-Kanade algorithm, and we

set W = R = 2 for the LAP. In terms of quantitative values,

if we average over 100 random realisations of the deformation,

the LAP achieves a mean absolute error of 0.039 pixels when

K = 1, and 0.021 pixels when K = 2; equivalent to a

3.9% and 2.1% error in the estimate, respectively. In contrast,

the Lucas-Kanade algorithm obtains a mean absolute error

of 0.403 pixels, which is equivalent to a 40.3% error in the

estimate.
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C. Poly-Filter Extension

Although the LAP algorithm is able to estimate large de-

formations directly, it requires a filter basis with large support

to do so. This is equivalent to assuming large regions of the

deformation are very slowly varying (i.e. constant), an assump-

tion that is not likely to be always true. To overcome this

issue, we use an iterative refinement in which the deformation

field is estimated in a course-to-fine manner. However, unlike

[13], [23], [48], we do not implement this refinement using

image pyramids, rather we only change the support of the

filters using the parameter R, and continue to work on the full

resolution image; large values of R allow the estimation of

large slowly varying deformations whilst small values allow

faster variation in the deformation. We term this extension the

poly-filter LAP (PF-LAP). Note that, like all coarse-to-fine

schemes, this approach will encounter difficulties if there are

very localised large displacements in the deformation field.

The PF-LAP operates as follows: we first set the half-

support of the filters, R, to its maximum value. For this filter

size, we calculate the coarse, slowly varying, deformation field

using the LAP algorithm. Next, we warp image I2 closer to

image I1 using the estimate of the deformation. Then, we

repeat the process with smaller filter sizes, each time adding

the result to the previous estimate of the deformation, until

we obtain a complete estimate that covers both slow and

fast variations in the deformation field. To avoid enhancing

errors in the deformation estimate (e.g., caused when the

system of equations defined in (13) is ill-conditioned), we

apply a post-processing procedure at each iteration. The post-

processing comprises first detecting and replacing the errors

using an inpainting procedure [49], [50], and then smoothing

the resulting deformation field using a low-pass filter. The

errors are identified in two ways: 1) if the displacement of

the deformation estimate is greater than R, the size of the

LAP filters; 2) if they are within W from the image boundary.

The whole process is illustrated in Fig. 5 and summarised in

Algorithm 2. The details of the image warping, inpainting and

deformation smoothing are covered in the next section.

In terms of the actual implementation, we define a maxi-

mum value of the filter half-support, Rmax, and then allow the

values of R to descend in powers of 2 from Rmax until R = 1
is reached. The exact value of Rmax can either be determined

based on a priori knowledge of the maximum displacement

of the deformation (i.e. Rmax = maximum displacement in

pixels) or set such that the filter size does not exceed the

size of the image being processed. Also, as the deformation

estimate is smoothed at each iteration in the post-processing,

it can be beneficial to allow the algorithm to repeat iterations

with the same size of filters. However, to avoid performing too

many iterations, we limit the number, i.e. Max. Iteration = 3,

and allow the algorithm to stop if the benefit is small. Note

that the benefit is measured as the PSNR between the first

image and the shifted version of the second image obtained

using the deformation estimate.

Finally, we have to set the size of the local windows

considered by the LAP algorithm (i.e., the parameter W ). In

noiseless conditions, this parameter should be set equal to the

Algorithm 2: Poly-Filter extension to the LAP algo-

rithm
Inputs: Images I1 and I2, number of filters N and vector of

filter sizes r
1 Initialisation: Set u0 = 0 and Ishift2 = I2;
2 Noise Estimation: Estimate the noise in the images using

method described in Section IV-B and set Wlimit according
to (14);

for i = 1 to Number of elements in r do
3 LAP Parameters: R = r[i] and W = max {R,Wlimit};

for l = 1 to Max. Iteration do
4 Pre-Filtering (OPTIONAL): Construct filter p0 from

(8) and obtain high-pass images Ihp1 and Ihp2

according to Section IV-A;
5 Estimation: Using N , R and W , estimate the

deformation increment, ∆u, between the images

Ihp1 and Ihp2 using the LAP defined in Algorithm 1;
6 Post-Processing: Use inpainting procedure detailed

in Section IV-D to remove errors in deformation
increment, ∆u. Then smooth ∆u using Gaussian
filter detailed in Section IV-E;

7 Update: Set ui = ui +∆u;
8 Warping: Warp I2 closer to I1 using ui to obtain

Ishift2 . If R ≤ 2 pixels then warping is performed
using cubic OMOMS interpolation, else it is
performed using shifted-linear interpolation. See
Section IV-C for details;

if PSNR(I1, I
shift
2,l )−PSNR(I1, I

shift
2,l−1) > ǫ then

Terminate inner For loop;
end

end
end

filter half-support R hence reducing in size as R decreases.

If however the images are contaminated by noise then W
should be limited in size, see Section IV-B for the precise

limit. The reason for this is that at small window sizes the

algorithm cannot distinguish between the deformation and the

noise corruption. Thus, by increasing the window size, a larger

linear system of equations, i.e., (13), can be built to combat

the noise corruption. Note that the filter size is unchanged.

A side effect of this approach to noise is that we lose some

of the fine variations in the deformation field but as we shall

demonstrate later this loss in accuracy is far less than current

image registration algorithms.

IV. PRE- AND POST PROCESSING TOOLBOX

In this section, we present a toolbox of pre- and post-

processing techniques that can be applied either on the images

or on the estimate of deformation field in the PF-LAP.

A. Image Pre-Processing

If the brightness consistency hypothesis is satisfied then

the PF-LAP can be used directly on the images. However,

in practice, real images are likely to contain some change

in illumination that invalidates the brightness consistency. To

overcome this issue, several image pre-filtering techniques

have been proposed ranging from simple Gaussian smoothing

to non-linear structure-texture decomposition [51]. For the PF-

LAP, we use two methods. The first is a simple histogram

matching in which the histogram of I2 is matched with I1. The

second method is to perform a high-pass filtering operation on
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the images to reduce the effect of slowly varying illumination

changes that are additive in nature. Specifically, we filter each

image with the first filter (a Gaussian function) from the basis

in (8), and then remove the smoothed image from the original:

Ihpi [k] = Ii[k]− p0[k] ∗ Ii[k], where p0 is the first basis filter

and Ihpi is high-passed version of the image Ii.

B. Image Noise Estimation

Along with varying illumination, the brightness consistency

can also be invalidated if the input images are corrupted by

noise. In this paper we shall assume this noise is additive white

Gaussian in nature. Thus, to improve the LAP’s robustness to

such corruption, we limit the minimum window size W based

on the amount of noise present in the image. Empirically, we

obtain the following equation for the limit:

Wlimit = max (⌈38− PSNRest/2⌉ , 1) , (14)

where PSNRest is an estimate of the PSNR derived from the

variance of the noise. Note that we use the median of the

absolute deviation (MAD) of the highest frequency subband

proposed in [52] to estimate the noise variance.

C. Image Warping

The iterative procedure of the PF-LAP algorithm requires

applying a space-varying non-integer shift estimate to the

image I2. To this end, it is necessary to build a continuous

model of this image, which is achieved by interpolation. High-

quality interpolation can be achieved using cubic-splines [27],

[53], or Cubic OMOMS [54]. However, in order to ensure fast

(speed similar to bilinear), but still high-quality interpolation

(quality similar to Key’s cubic interpolation [55]), we have

opted for shifted linear interpolation [56] for all the LAP filters

with a half-support R > 2 pixels. At finer filter resolution, i.e.

R ≤ 2 pixels, we use cubic-OMOMS interpolation.

D. Deformation Inpainting

The raw LAP algorithm is able to provide a very consistent

deformation field. However, some values found are obviously

erroneous because they exceed the maximal displacement ex-

pected, given the support of the forward filter. These values are

then estimated based on their neighbours, using an isotropic

diffusion that is very similar to the one proposed in [49],

[50], [57]. In essence, the valid (i.e., error free) neighbours

of erroneous pixels are averaged to provide an estimate of

these pixels. The process is then repeated (and refined for

each erroneous pixel) until all erroneous pixels have been

re-estimated. Note that motion inpainting has previous been

proposed in [58], [59]. Finally, simple replication of the

neighbouring deformation values is used to fill in the boundary

errors.

E. Deformation Smoothing

The aim of deformation smoothing is to remove any outly-

ing estimates not previously identified in the inpainting pro-

cedure. Given our hypothesis of a slowly varying deformation

field, we choose to smooth the estimate using a Gaussian filter.

LAP Algorithm

Post-Processing

+ u

Warp

k

∆u

Image 1 Image 2uk+1

Inpainting

Pre-FilteringPre-Filtering

N R W 

Fig. 5. Diagram illustrating the poly-filter extension to the LAP (termed PF-
LAP). The LAP algorithm is summarised in Algorithm 1 and the processing
blocks (Pre-Filtering, Warp, Inpainting and Post-Processing) are described in
Section IV. Note that ui is the deformation estimate at the ith iteration, ∆u
is the deformation increment, and N , R and W are respectively the number
of filters, filter half-support and window half-support for the LAP.

More specifically, given the local window half-size of W , we

use a Gaussian filter that has σs = 2W and a support of 4W
by 4W pixels. Note that the filtering is performed assuming

symmetric boundary conditions.

V. COMPARATIVE PERFORMANCE EVALUATION

In this section, we now evaluate the performance of the

PF-LAP algorithm against the following selection of image

registration algorithms: Matlab’s Demons algorithm based on

the implementation in [21]; intensity-based image registration

using residual complexity minimisation from the Medical

Image Registration Toolbox (MIRT) [26]; elastic registration

using a cubic B-spline free form deformation model imple-

mented in ImageJ (bUnwarpJ) [24]; and mutual information-

based registration using a multiresolution cubic B-spline de-

formation model implemented in Elastix [25]. We also use, as

a baseline, a modern implementation of Lucas and Kanade’s

algorithm (LK) available in Piotr’s Computer Vision Matlab

Toolbox [60]. The parameters for each algorithm are set

according to their default values. For the LAP, we set N = 3
and choose Rmax to be the largest power of 2 that fits within

the images (the minimum filter size is R = 1).

The performance of the algorithms is measured using three

quantities: the median and mean absolute deformation error (in

pixels) between the original deformation field and its estimate,

EMed and EMean, respectively; and the computation time of

the algorithm. Note that, regarding the computation time, the

algorithms are run on a desktop containing an Intel Core i7-

5930K CPU @ 3.50 GHz with 64 Gb memory.

A. Generating Synthetic Data

To perform the evaluation, we generate synthetic images

and deformation fields that exactly satisfy the brightness

consistency in (1). The images are defined continuously as

a summation of shifted, scaled and rotated cubic curves

(y = a1x
3 + a2x), each with a certain length and thickness,

which we term spaghetti. Examples of these spaghetti images

are shown in Fig. 6 and their full description can be found

in the supplementary material. The advantage of this image

description is twofold: first, by altering the parameters of the

individual spaghetti, we can obtain varying types of image



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016 9

1.9x

(a) Feature-full Image 1 (b) Polynomial Deformation

1.9x

(c) Feature-full Image 2 (d) PF-LAP estimate

1.9x

(e) Feature-less Image 1 (f) Polynomial Deformation

1.9x

(g) Feature-less Image 2 (h) PF-LAP estimate

1.3x

(i) Feature-less Image 1 (j) Smooth Deformation

1.3x

(k) Feature-less Image 2 (l) PF-LAP estimate

Fig. 6. Examples illustrating the synthetic ‘spaghetti’ images, the synthetic deformation fields and the corresponding estimate obtained by the PF-LAP. Parts
(a) to (d) correspond to the feature-full images obtained when the thickness of the spaghetti is small whereas parts (e) to (h) correspond to the feature-less
images obtained when the thickness of the spaghetti is large. Parts (i) to (l) correspond to the feature-less images under smoothly-varying deformation analysed
in Section V-D. Note that the maximum displacement of the parametric deformation is 16 pixels and the smooth deformation is 25 pixels.

texture. For example, Fig. 6a and 6e demonstrate the variations

obtained when changing just the thickness of the spaghetti.

Secondly, by having a continuous description of I2, we can

then automatically generate I1 directly using (1); thus the

images are independent of an interpolation method. Note that

the size of each image is 301 by 301 pixels.

The synthetic deformation fields are defined continuously

using a complex-valued function f(z), where z = x + jy.

Specifically, the field is obtained from the function as follows:

u(x) = [Re {f(z)} , Im {f(z)}]
T
,

where Re {f(z)} and Im {f(z)} are respectively the real and

imaginary parts of f(z). The complex-valued function used in

these synthetic simulations is a quadratic polynomial, f(z) =
b1 + b2z + b3z

2, which results in a smooth, slowly varying,

deformation field. An example of a polynomial deformation

field is shown in Fig. 6b. Note that for these simulations we

set the maximum displacement of the deformation field to be

16 pixels.

B. Varying Image Texture

We start by analysing the performance of the algorithms

in ideal conditions where our hypotheses - brightness con-

sistency and smooth, slowly varying, deformation - are satis-

fied. Specifically, we evaluate the estimation of the quadratic

deformation field, defined in the previous section, for two

scenarios: 1) feature-full images in which the texture contains

features such as edges, see Fig. 6a; 2) feature-less images in

which the texture varies slowly, see Fig. 6e. These textures are

obtained by generating identical spaghetti images, as discussed

in Section V-A, and varying the thickness of the spaghetti;

the feature-full images correspond to a thin spaghetti whereas

the feature-less images correspond to a thick spaghetti, see

the supplementary material for details. Note that each image

contains 25 spaghetti objects and that the results are averaged

over 10 random realisations of each type of image. Finally, as

the brightness consistency is satisfied, no image pre-filtering

is used in the PF-LAP.

The results of estimating the deformation fields with each

algorithm are shown in Table I and examples of the estimates

obtained by the PF-LAP are shown in Fig. 6. From the table,

we observe that the PF-LAP is very accurate and consistently

outperforms the other algorithms for both types of images.

In particular, the PF-LAP is roughly 4 times more accurate

than the next best algorithm in terms of median error for

both types of images and roughly 2 times more accurate
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TABLE I
ERROR COMPARISON FOR THE PF-LAP AND A SELECTION OF

IMAGE REGISTRATION ALGORITHMS UNDER IDEAL

CONDITIONS.

Feature-full Images Feature-less Images

EMed EMean Time EMed EMean Time

PF-LAP 0.007 0.133 1.69 0.007 0.058 1.59
Demons [21] 0.053 0.180 2.81 0.026 0.121 2.69

bUnwarpJ [24] 0.038 0.152 5.95 0.053 0.106 6.82
Elastix [25] 0.096 1.162 956.7 0.068 0.159 958.4
MIRT [26] 0.086 0.956 30.30 0.023 0.239 29.60

LK [60] 0.105 0.525 0.02 0.323 1.245 0.02

* Results averaged over 10 random realisations of the deforma-
tion field (maximum displacement is 16 pixels)
** Bold values indicate the best results

for the mean error on the feature-less images. Accordingly,

our algorithm is able to estimate, almost exactly, a smoothly

varying deformation field under the brightness consistency

hypothesis. Also, unlike some of the other algorithms, its

performance is independent of the image texture.

In terms of computation time, the PF-LAP took on average

1.64 seconds to compute the deformation field for the 301 by

301 pixel images; considerably faster than all of the algorithm

with the exception of LK implementation [60]. Importantly,

however, unlike [60] this computation time is achieved using

only a Matlab implementation, without compiled mex-files.

Also, due to the flexible nature of the PF-LAP, we have the

option to further reduce the computation time by decreasing

the parameter Max. iteration from 3 to 1 in Algorithm 2. In this

case, the PF-LAP achieves a computation time of 0.6 seconds

with only a small decrease in estimation accuracy; EMed =
0.010 pixels and EMean = 0.150 pixels for the feature-full

images and EMed = 0.010 pixels and EMean = 0.150 pixels

for the feature-less images.

C. Violating the Brightness Consistency Hypothesis

In this section, we evaluate the robustness of the algo-

rithms to violations of the brightness consistency hypothesis.

Accordingly, we use the feature-less images, with quadratic

deformations, from the previous section and corrupt the images

with additive white Gaussian noise. The Peak Signal-to-Noise-

Ratio (PSNR) varies from 50dB to 10dB and the results at each

PSNR value are averaged over 10 random realisations.

The results of this evaluation are shown in Fig. 7. The figure

shows the mean absolute deformation error, on a log scale,

for the algorithms, see the supplementary material for the

corresponding graph for the median error. The graph demon-

strates that the PF-LAP is robust to violations of the bright-

ness consistency caused by Gaussian noise. Specifically, our

algorithm significantly outperforms the competing algorithms

when the PSNR value decreases below 35dB; over 2 times

more accurate than the next best algorithm. Along with these

results, we have also observed that PF-LAP is robust to slowly

varying deterministic violations of the brightness consistency

(additive in nature). Using the image pre-filtering operation,

we obtained an estimation accuracy of EMed = 0.036 pixels

and EMean = 0.238 pixels for the feature-less images where

I1 had undergone an illumination change characterised by
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Fig. 7. Graph showing the mean absolute deformation error, EMean, for the
PF-LAP and a selection of image registration algorithms obtained when the
input images are corrupted by varying levels of additive white Gaussian noise.
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Fig. 8. Graph showing the mean absolute deformation error, EMean, for
the PF-LAP and a selection of image registration algorithms obtained as the
mean total variation of deformation increases. The equation of the mean total
variation is give in (15) and it is measured in pixels.

a quadratic polynomial. Note that the next best algorithm

achieved EMed = 0.778 pixels and EMean = 1.646 pixels.

D. Probing the Local Constancy Assumption

We now evaluate the robustness of the algorithms to local

variations in the deformation field (i.e. violations of the local

constancy assumption). Specifically, we use the feature-less

images from the previous tests but corrupt the quadratic defor-

mations by adding a non-parametric, smoothly-varying, defor-

mation field to them. An example of the resulting deformation

is shown in Fig 6j. The smoothly-varying deformation is ob-

tained by low-pass filtering a randomly generated deformation

field (each component of the field is drawn from a normal

distribution with zero mean and a standard derivation of 1).

The resulting deformation is then scaled so that it achieves

a certain maximum displacement; increasing the maximum

displacement equates to a faster varying deformation. For this

evaluation the maximum displacement of the smoothly-varying

deformation increases from 0 to 16 pixels. We measure how

fast the deformation varies using the mean total variation, in

pixels, of the deformation field:

TVmean =
1

Np

∑

x

√

‖∇u1(x)‖
2

2 + ‖∇u2(x)‖
2

2, (15)

where Np is the number of pixels in the images.

The results of this evaluation are shown in Fig. 8 and an

example of the estimate obtained by the PF-LAP is illustrated

in Fig. 6 (i) to (l). The graph in Fig. 8 shows the mean absolute
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4.5x

(a) Image 1, I1 (b) Deformation Field

4.5x

(c) Image 2, I2 (d) PF-LAP Estimate

3.8x

(e) Image 1, I1 (f) Deformation Field

3.8x

(g) Image 2, I2 (h) PF-LAP Estimate

4.3x

(i) Image 1, I1 (j) Deformation Field

4.3x

(k) Image 2, I2 (l) PF-LAP Estimate

Fig. 9. Example of PF-LAP on three images from Oxford affine dataset [61]. The input images for Bikes are shown in parts (a) and (c), for Leuven in
parts (e) and (g), and Wall in parts (i) and (k). The corresponding ground truth deformation of each image pair is shown in (b), (f) and (j), and the estimate
obtained by the PF-LAP is shown in (d), (h) and (l). The maximum displacement for each deformation field is 46 pixels for Bikes, 7 pixels for Leuven and
119 pixels for Wall.

deformation error, on a log scale, for the algorithms. Note that

the first data point, on the left side, equates to the values in

Table I for the Feature-less images (i.e. no smoothly-varying

deformation field). The graph demonstrates that the PF-LAP

is robust to violations of the local constancy assumption

caused by a smoothly-varying deformation field. Also, with

the exception of Elastix [25], the PF-LAP outperforms the

comparison algorithms.

VI. APPLYING THE PF-LAP TO REAL IMAGES

In this section, we now demonstrate the versatility of our

algorithm on real images and applications.

A. Image Alignment

We start by analysing the performance of the PF-LAP on a

standard image processing task - image alignment. Specially,

we use three pairs of images taken from the Oxford affine

dataset [61]. This dataset provides pairs of images, which

cover a range of situations e.g. blurring, varying illumination

or change in viewpoint, and the corresponding homography

that relates the two images. In more detail, we use the

following images: 1) Bikes (size 1000 by 700 pixels), in

which the second image has been corrupted via blurring;

2) Leuven (size 912 by 614 pixels), which in the second

image has been corrupted by changing the illumination; 3)

Wall (size 680 by 880 pixels), which contains a change in

viewpoint and illumination. To assess the performance of the

algorithm, we measure the accuracy of the estimated deforma-

tion field to that obtained from the ground truth homography

provided with the images. All three pairs of images and the

corresponding ground truth deformations are shown in Fig. 9.

For comparison, we provide the results obtained when using

Demons [21], bUnwarpJ [24] and MIRT [26]. Note that, for a

fair comparison, histogram matching is applied to the Leuven

and Wall images to combat the change in illumination before

being processed by Demons, bUnwarpJ and MIRT.

The results of estimating the deformation fields with each

algorithm are shown in Table II and the estimated deformations

obtained by the PF-LAP are shown in Fig. 9. From the table,

we observe that the performance of the PF-LAP is consistent

across all three types of images. The deformation error in-

creases slightly for the Wall images however the maximum

displacement for this pair is 119 pixels whereas it is 46 pixels

for Bikes and 7 pixels for Leuven. More generally, the PF-LAP

outperforms the other non-rigid registration algorithms on the

Leuven and Wall images, and obtains the lowest mean error on

Bikes; it is 0.003 pixels off the lowest median error for Bikes

achieved by bUnwarpJ. Similarly, in terms of computation

time, the PF-LAP is faster for both the Leuven and Wall

images. Further illustrations of these results are shown in the

supplementary material.
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TABLE II
ERROR COMPARISON FOR THE PF-LAP AND A SELECTION OF IMAGE REGISTRATION

ALGORITHMS ON IMAGES FROM THE OXFORD AFFINE DATASET [61].

Bikes Leuven Wall

EMed EMean Time EMed EMean Time EMed EMean Time

PF-LAP 0.223 0.292 12.10 0.171 0.217 10.41 0.506 0.866 11.80

Demons [21] 0.458 0.702 15.09 0.243 0.395 11.83 1.383 21.66 13.16
bUnwarpJ [24] 0.220 0.308 8.54 0.189 0.229 11.59 10.57 30.28 30.69

MIRT [26] 0.726 4.228 129.9 0.363 0.813 87.76 0.571 1.874 110.4

* Bold values indicate the best results

B. Retinal Image Registration

We now analyse the performance on the PF-LAP

when registering retinal images from the Fundus

Image Registration (FIRE) dataset [62], available at

http://www.ics.forth.gr/cvrl/fire/. The dataset comprises

134 retinal images pairs acquired with a Nidek AFC-210

fundus camera. The camera has a resolution of 2912 by 2912

pixels and a FOV of 45◦ both in the x and y dimensions. For

this analysis we use the following two sets of images from the

dataset: 1) Class S comprising 71 image pairs with an overlap

greater than 75% and low anatomical differences between the

images. 2) Class A comprising 14 image pairs with an overlap

greater than 75% but with high anatomical differences. Note

that we do not use the third group of images, Class P, as

the overlap between the images is too small for non-rigid

registration algorithms to obtain a meaningful result. An

example of one of the Fundus image pairs is shown in Fig.

11.

To assess the performance of an algorithm, the dataset

provides a sequence of control points in I2 and the corre-

sponding ground truth positions in I1. The accuracy of an

algorithm is thus the displacement error, in pixels, between

the registered control points and the ground truth versions.

In [62], the displacement error per image pair is converted

into a registration percentage score. The score is obtained by

defining a registration as a success if the displacement error is

less than a certain threshold and calculating the percentage

of successful registrations for that threshold. An algorithm

is then characterised by how the percentage score varies as

error threshold increases. For comparison, we use the results

provided by the dataset for the following algorithms: H-

M [63], PIIFD [64] and GDB-ICP [65]. These algorithms

are all parametric in nature; they extract a set of feature

points (Harris points in PIIFD, and SIFT in H-M and GDB-

ICP) and then estimate a parametric model. A 2D parametric

deformation model is used in PIIFD and GDB-ICP, whereas

H-M estimates both the 3D camera pose and a 3D ellipsoidal

model of the eye (12 parameters in total) to register the

images. Thus these comparison algorithms are much more

constrained and specialised than the PF-LAP–our aim is to

demonstrate the versatile nature of the LAP rather than solving

the specific FIRE problem. Note that the results for GDB-ICP

are incomplete for both Class S and A, and the results for

H-M and PIIFD are incomplete for Class A. Finally, due to

the size of these images, we downsample them by 2 and then

upscale the resulting deformation field.
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Fig. 10. Graphs showing the registration scores obtain by the LAP and
other algorithms for the Class S and Class A retinal images from the FIRE
dataset [62]. The scores indicate the percentage of images an algorithm
successfully registered with an error less than a certain threshold. The error
measures the distance between registered control points and their ground truth
position. Note that there are 71 images in Class S and 14 in Class A.

The results of the registration are shown in Fig. 10, (a)

corresponds to Class S and (b) to Class A, and examples of

the registration obtained by the PF-LAP are shown in Fig.

11. The graphs in Fig. 10 show the percentage of successful

registrations as the error threshold increases from 0 to 18

pixels. The graphs show that the PF-LAP outperforms the

comparison algorithms for the Class A images and is very

competitive for the Class S images. For example, on the

Class S images, an error threshold of 1.5 pixels equates to

a registration score of 68% for the PF-LAP compared to

46% for H-M [63], 62% for GDB-ICP [65] and 18% for

PIIFD [64]. However, the added constraint of estimating just a

parametric deformation enable the other algorithms to obtain a

more accurate registrations on some of the images that exhibit

greater illumination change and anatomical differences. This
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(a) Image 1, I1
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(b) Image 2, I2 (c) PF-LAP Estimate

5x

(d) Registered Image 2

Fig. 11. Example of PF-LAP on a pair of retinal images from the Fundus Image Registration (FIRE) Dataset [62] (Class S). The input images are shown in
parts (a) and (b), and the estimated deformation field from the LAP in (c). The registered version of image 2 obtained using this deformation is shown in
(d). Note that the red crosses indicate the control points used to assess the performance of the registration. An animation illustrating the registration can be
found in the supplementary material. Finally the images have been cropped to 2719 by 2719 pixels.

observation can be seen in the median and mean displacement

errors: the PF-LAP obtains a median and mean error of 1.25

pixels and 2.17 pixels, respectively, on Class S and 3.32 pixels

and 4.53 pixels on Class A. In comparison, the corresponding

values for H-M [63] are 1.54 pixels and 1.95 pixels for Class

S, and 7.28 pixels and 54.90 pixels for Class A. It would

be interesting to see the results obtained if we combined

a parametric model with the PF-LAP. Finally, in terms of

computation time, on average the PF-LAP took 45.9 seconds

per registration for Class S and 40.0 seconds per registration

for Class A. The computation times for the other algorithms

were not provided. Further illustrations of these results are

shown in the supplementary material.

C. Extension to 3D Motion Correction in MRI

Along with the previous examples, we have also presented,

in [45], a 3D extension of the LAP and demonstrated using it

to estimate and remove the respiratory motion present in three

in-vivo MRI datasets. The estimated deformations obtained

from the 3D LAP enable more accurate motion compensation

of the MRI data than two competing non-rigid image registra-

tion algorithms: Elastix [25] and a 3D Demons algorithm [66].

In this case, the accuracy of the registration was measured

by performing a lung segmentation on I1 and comparing

the volume of the lungs to the equivalent obtained from the

registered version of I2. The comparison was measured using

Dice coefficients [67]; a Dice coefficient of 1 indicates perfect

overlap of the volumes whereas 0 indicates the opposite. Based

on this measure, the 3D LAP achieved a mean Dice coefficient

of 0.90 with a standard derivation of 0.01; in comparison

Elastix achieved 0.87 with a standard derivation of 0.02 and

Demons achieved 0.73 with a standard derivation of 0.05.

Importantly for 3D imaging, the 3D LAP was also significantly

faster than the other algorithms; it took 36 seconds to register

a 256 by 256 by 72 volumetric image, which is roughly twice

as fast as the next best algorithm.

VII. DISCUSSION AND CONCLUSIONS

We have presented a new approach to estimating a smoothly

varying deformation field that does not require the small

displacement hypothesis. The first ingredient of this approach

is a reformulation of the brightness consistency hypothesis as

local all-pass filtering; the local filter is used to relate a local

region in one image to the same region in the other image.

The deformation field is then extracted from the filter. The

second ingredient is the linear transformation of the all-pass

filtering using a forward-backward representation. Using this

representation, we devised an efficient algorithm that required

significantly less computation time than a selection of image

registration algorithms. In synthetic experiments, we first

demonstrate that, without using any pre/post processing, our

algorithm is able to obtain a tenfold increase in accuracy when

compared to the standard Lucas and Kanade’s algorithm [13],

which also assumes the deformation is locally constant. Next,

we show that the LAP outperforms a selection of image regis-

tration algorithms when tasked with estimate smoothly varying

deformations that satisfy the brightness consistency. We then

demonstrated that our algorithm maintains its competitive edge

when faced with violations of the brightness consistency (e.g.

image noise) and the local constancy assumption. Finally, we

demonstrate the versatility of the LAP on real applications;

our algorithm accurately, and quickly, aligned natural images

taken from the Oxford dataset and registered retinal images

from the Fundus Image Registration Dataset.

Accordingly, the proposed algorithm is well suited to re-

trieving smoothly varying flows, which is beneficial in non-

computer vision applications such as registration in medical

imaging, remote sensing and estimating fluid flows in meteo-

rology. In particular, the key advantages of the LAP -its speed

and accuracy- easily allow for the algorithm to be used as

a basic tool within larger, more complex, tasks. For example

we are currently in the process of incorporating a 3D version

of the algorithm [45] into a MRI-based system that performs

motion correction on PET images [68]. Another example is

our recent work into iterative parametric registration [69];

the deformation obtained from the LAP is iteratively fitted

to a parametric model. A final example is our use of the

LAP algorithm to provide motion analysis in fluorescence

microscopy images [70].

Finally, given the accuracy and speed of the LAP algorithm,

it would be interesting to investigate how the LAP could be
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adapted to perform optical flow estimation. The key element

here would be to address the challenge of estimating motion

discontinuities, which, as mentioned in the introduction, can-

not be modeled using the brightness consistency. One approach

would be to follow the example of [71], [72] and use a

two step process that involves first matching (i.e. running the

original PF-LAP) and then using an edge-preserving interpo-

lation method (e.g. EpicFlow [71]) to refine the matching.

An alternative approach would be to investigate integrating

the LAP equation (12) into the framework of cost-volume

filtering [73], used in recent optical flow algorithms [74], [75].
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[3] B. Zitová and J. Flusser, “Image registration methods: a survey,” Image

and Vision Comput., vol. 21, no. 11, pp. 977–1000, 2003.

[4] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,” IEEE Signal Process. Mag., vol.
20, no. 3, pp. 21–36, 2003.

[5] C. K. Liang, L. W. Chang, and H. H. Chen, “Analysis and compensation
of rolling shutter effect,” IEEE Trans. Image Process., vol. 17, no. 8,
pp. 1323–1330, 2008.

[6] L. Qu, F. Long, and H. Peng, “3D registration of biological images and
models: Registration of microscopic images and its uses in segmentation
and annotation,” IEEE Signal Process. Mag., vol. 32, no. 1, pp. 70–77,
2015.

[7] A Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image
registration: A survey,” IEEE Trans. Med. Imag., vol. 32, no. 7, pp.
1153–1190, 2013.

[8] M. Gong, S. Zhao, L. Jiao, D. Tian, and S. Wang, “A novel coarse-to-
fine scheme for automatic image registration based on SIFT and mutual
information,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp.
4328–4338, 2014.

[9] L. Liu, T. Jiang, J. Yang, and C. Zhu, “Fingerprint registration by
maximization of mutual information,” IEEE Trans. Image Process., vol.
15, no. 5, pp. 1100–1110, 2006.
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