Possibilistic vs Evidential Valuation Algebra Networks

Christopher Gilliam¹, Branko Ristic¹ Marion Byrne²

 1 School of Engineering, RMIT University, Australia 2 National Security and ISR Division, Defence Science and Technology Group, Australia

Australian Government

Department of Defence Science and Technology

9th October 2019

Outline

Realistic Reasoning Applications

- Heterogeneous data, various types of uncertainty, multiple variables
- Illustrative example \longrightarrow The Captain's Decision Problem

2 Approaches to Modelling Uncertainty

- Handling multiple variables → Valuation Based Algebra (VBA)
- Beyond probability theory \longrightarrow Possibility theory, DS evidence theory

3 New Possibilistic Valuation Algebra Network

- Valuations as Possibility Functions
- VBA Operations adhere to Possibility Theory
- Possibilistic Uncertain Implication Rule
- 4 Simulation Results

5 Conclusions

Uncertain Reasoning Captain's Problem

Real World Reasoning and Decision Making...

Some challenges:

Data

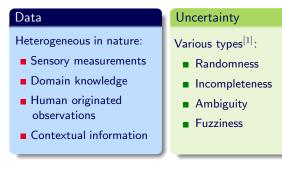
Heterogeneous in nature:

- Sensory measurements
- Domain knowledge
- Human originated observations
- Contextual information

Uncertain Reasoning Captain's Problem

Real World Reasoning and Decision Making...

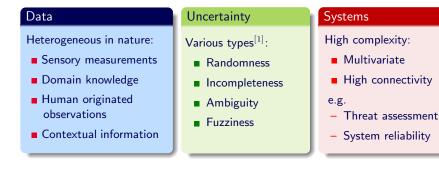
Some challenges:



[1] R. Kruse et. al., 'Uncertainty and vagueness in knowledge based systems: numerical methods', Springer, 2012.

Real World Reasoning and Decision Making...

Some challenges:



[1] R. Kruse et. al., 'Uncertainty and vagueness in knowledge based systems: numerical methods', Springer, 2012.

Real World Reasoning and Decision Making...

Some challenges:

Data	Uncertainty	Systems	
 Heterogeneous in nature: Sensory measurements Domain knowledge Human originated observations Contextual information 	Various types ^[1] : Randomness Incompleteness Ambiguity Fuzziness	 High complexity: Multivariate High connectivity e.g. Threat assessment System reliability 	

Our approach:

- $\stackrel{ }{\mapsto} \ \ Construct\ reasoning\ networks\ using\ different\ models\ of\ uncertainty} e.g.\ Possibility\ Theory\ and\ Dempster-Shafer\ Evidence\ Theory}$

[1] R. Kruse et. al., 'Uncertainty and vagueness in knowledge based systems: numerical methods', Springer, 2012.

Uncertain Reasoning Captain's Problem

An example - The Captain's Decision Problem^[1]

Estimate the number of days a ship will be delayed based on the following

[1] R. G. Almond, 'Graphical Belief Modeling', Chapman and Hall, 1995.

An example - The Captain's Decision Problem^[1]

Estimate the number of days a ship will be delayed based on the following

Prior Information

- 1 Arrival delay (A) is due to departure delay (D) and the travel delay (T).
- In 90% of the cases, departure delay (D) is caused by loading delays (L) or by engine service (S).
- In 90% of the cases, travel delay (T) is caused by bad weather (W) or by unplanned repairs (R) at sea.
- 4 A repair (R) is required in 50% to 70% of the trips if a service (S) has not been performed prior to travel.

[1] R. G. Almond, 'Graphical Belief Modeling', Chapman and Hall, 1995.

An example - The Captain's Decision Problem^[1]

Estimate the number of days a ship will be delayed based on the following

Prior Information

- 1 Arrival delay (A) is due to departure delay (D) and the travel delay (T).
- In 90% of the cases, departure delay (D) is caused by loading delays (L) or by engine service (S).
- In 90% of the cases, travel delay (T) is caused by bad weather (W) or by unplanned repairs (R) at sea.
- A repair (R) is required in 50% to 70% of the trips if a service (S) has not been performed prior to travel.

Additional Information

- **5** Chance of 1 day loading delay is 30% to 50%.
- 6 The engine service has been skipped.
- 7 Forecast 60% to 90% chance of bad weather on sea.

[1] R. G. Almond, 'Graphical Belief Modeling', Chapman and Hall, 1995.

Modelling Systems Quantifying Uncertaint

Valuation Based Algebra^[1]

A framework for representing knowledge and inferring outcomes within a system

[1] P. Shenoy, 'A valuation-based language for expert systems', Int. J. Approx. Reason., 1989.

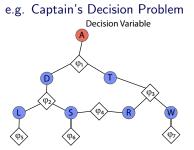
Modelling Systems Quantifying Uncertaint

Valuation Based Algebra^[1]

A framework for representing knowledge and inferring outcomes within a system

Primary Elements:

- 1 Variables V within the system
- **2** Valuation functions φ



Valuations represent knowledge about the relationship between variables

Notation: $\Theta_{\mathcal{D}} = \text{set of possible values of a set of variables } \mathcal{D}$ $\hookrightarrow = \text{Configurations of } \mathcal{D}$

[1] P. Shenoy, 'A valuation-based language for expert systems', Int. J. Approx. Reason., 1989.

Modelling Systems Quantifying Uncertainty

Valuation Based Algebra^[1]

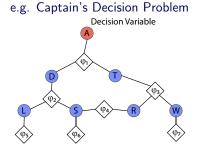
A framework for representing knowledge and inferring outcomes within a system

Primary Elements:

- 1 Variables V within the system
- **2** Valuation functions φ

Operations for inferring outcomes:

- 1 Combination \oplus
- 2 Marginalization \downarrow



Combination is the aggregation of knowledge

e.g. $arphi_2\oplusarphi_5=$ aggregated knowledge from $arphi_2$ and $arphi_5$

Marginalization is the focusing of knowledge e.g. $\varphi_2^{\downarrow D} =$ knowledge of D implied by φ_2 if other variables disregarded. [1] P. Shenov, 'A valuation-based language for expert systems', Int. J. Approx. Reason., 1989.

Modelling Systems Quantifying Uncertainty

Valuation Based Algebra^[1]

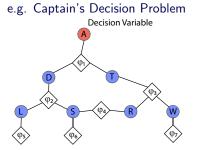
A framework for representing knowledge and inferring outcomes within a system

Primary Elements:

- 1 Variables V within the system
- **2** Valuation functions φ

Operations for inferring outcomes:

- 1 Combination \oplus
- 2 Marginalization \downarrow



 $\begin{array}{l} \mbox{Inference} = \mbox{Successive application of combination \& marginalization} \\ & \oplus \ \mbox{e.g. end goal is to obtain } (\varphi_1 \oplus \varphi_2 \oplus \ldots \oplus \varphi_7)^{\downarrow A} \end{array}$

[1] P. Shenoy, 'A valuation-based language for expert systems', Int. J. Approx. Reason., 1989.

Modelling Systems Quantifying Uncertaint

Valuation Based Algebra^[1]

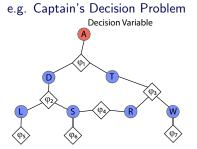
A framework for representing knowledge and inferring outcomes within a system

Primary Elements:

- 1 Variables V within the system
- **2** Valuation functions φ

Operations for inferring outcomes:

- 1 Combination \oplus
- 2 Marginalization \downarrow



Inference = Successive application of combination & marginalization \hookrightarrow e.g. end goal is to obtain $(\varphi_1 \oplus \varphi_2 \oplus \ldots \oplus \varphi_7)^{\downarrow A}$

If $\{\oplus,\downarrow\}$ satisfy a set of axioms^[2] = marginal can be computed locally!

[2] P. Shenoy and G. Shafer, 'Axioms for probability and belief-function propagation', in Readings in uncertain reasoning, 1990.

Quantifying Uncertainty in a System

 $\, \hookrightarrow \,$ Specifying the valuation functions and the operations \oplus, \downarrow

Many approaches to modeling uncertainty:

- Probability theory
- Possibility theory^[1]
- Imprecise probabilities^[2]
- Random sets^[3]
- Dempster-Shafer (DS) evidence theory^[4,5]

[1] L. Zadeh, 'Fuzzy sets as a basis for a theory of possibility', Fuzzy Sets and Systems, 1978.

- [2] P. Walley, 'Statistical reasoning with imprecise probabilities', Chapman & Hall, 1991.
- [3] R. Mahler, 'Statistical multisource-multitarget information fusion', Artech House Pub., 2007.
- [4] A. Dempster, 'Upper and lower probabilities induced by a multivalued mapping', Annals Math. Stat., 1967.
- [5] G. Shafer, 'A mathematical theory of evidence', Princeton Uni. Press, 1976.
- [6] A. Benavoli et. al., 'An application of evidential networks to threat assessment', IEEE Trans. Aerosp. Electron. Syst., 2009

Possibilistic vs Evidential Networks

Quantifying Uncertainty in a System

 $\, \hookrightarrow \,$ Specifying the valuation functions and the operations \oplus, \downarrow

Many approaches to modeling uncertainty:

- Probability theory
- Possibility theory^[1]
- Imprecise probabilities^[2]
- Random sets^[3]
- Dempster-Shafer (DS) evidence theory^[4,5]

Compare two approaches:

VBA using DS evidence theory \implies Evidential Networks^[6] VBA using Possibility theory \implies Possibilistic Networks **(our focus)**

- [1] L. Zadeh, 'Fuzzy sets as a basis for a theory of possibility', Fuzzy Sets and Systems, 1978.
- [2] P. Walley, 'Statistical reasoning with imprecise probabilities', Chapman & Hall, 1991.
- [3] R. Mahler, 'Statistical multisource-multitarget information fusion', Artech House Pub., 2007.
- [4] A. Dempster, 'Upper and lower probabilities induced by a multivalued mapping', Annals Math. Stat., 1967.
- [5] G. Shafer, 'A mathematical theory of evidence', Princeton Uni. Press, 1976.
- [6] A. Benavoli et. al., 'An application of evidential networks to threat assessment', IEEE Trans. Aerosp. Electron. Syst., 2009.

Possibility Theory Possibilistic Networks Implication Rule

Recap on Zadeh's Possibility Theory

Principle of minimal specificity

Unless impossible, no hypothesis can be ruled out

Measuring Possibility

Given a set of variables $\mathcal D$ with configurations $\Theta_{\mathcal D}$:

 \hookrightarrow possibility of an event $A \subseteq \Theta_{\mathcal{D}}$ is the mapping $\Pi : 2^{\Theta_{\mathcal{D}}} \to [0,1]$ where $2^{\Theta_{\mathcal{D}}}$ is the power set of $\Theta_{\mathcal{D}}$.

Π satisfies:

- **1** $\Pi(\varnothing) = 0 \rightarrow \Theta_{\mathcal{D}}$ is an exhaustive set of configurations
- 2 $\Pi(\Theta_{\mathcal{D}}) = 1 \rightarrow \text{mapping } \Pi \text{ is free of contradictions}$
- 3 $\Pi(A_1 \cup A_2) = \max(\Pi(A_1), \Pi(A_2)) \rightarrow$ replaces the additivity axiom in probability theory.

Possibility Theory Possibilistic Networks Implication Rule

Recap on Zadeh's Possibility Theory

Principle of minimal specificity

Unless impossible, no hypothesis can be ruled out

Measuring Possibility

Given a set of variables \mathcal{D} with configurations $\Theta_{\mathcal{D}}$:

 \hookrightarrow possibility of an event $A \subseteq \Theta_{\mathcal{D}}$ is the mapping $\Pi : 2^{\Theta_{\mathcal{D}}} \to [0, 1]$ where $2^{\Theta_{\mathcal{D}}}$ is the power set of $\Theta_{\mathcal{D}}$.

Concept of Necessity N:

Necessity is the dual of possibility such that $N(A)=1-\Pi(A^c), \ \, {\rm where} \ \, A^c \ {\rm is \ the \ complement \ of} \ \, A$

Possibility Theory Possibilistic Networks Implication Rule

Possibility Functions

Possibility Functions

$$\begin{array}{l} \text{A function } \pi: \Theta_{\mathcal{D}} \to [0,1] \text{ such that, for } A \subseteq \Theta_{\mathcal{D}}: \\ \Pi(A) = \max_{x \in A} \pi(x) \quad \text{and} \quad N(A) = \min_{x \in A^c} (1 - \pi(x)) \end{array}$$

Properties:

- $\pi(x) = 1$ for $x = x_0$ and 0 otherwise \implies Complete knowledge
- $\pi(x) = 1, \ \forall x \in \Theta_{\mathcal{D}} \implies$ Complete ignorance

Possibility Theory Possibilistic Networks Implication Rule

Possibility Functions

Possibility Functions

$$\begin{split} \text{A function } \pi: \Theta_{\mathcal{D}} \to [0,1] \text{ such that, for } A \subseteq \Theta_{\mathcal{D}}: \\ \Pi(A) = \max_{x \in A} \pi(x) \quad \text{and} \quad N(A) = \min_{x \in A^c} (1 - \pi(x)) \end{split}$$

Properties:

•
$$\pi(x) = 1$$
 for $x = x_0$ and 0 otherwise \implies Complete knowledge
• $\pi(x) = 1, \ \forall x \in \Theta_D \implies$ Complete ignorance

Relationship to a probability function p(x):

$$\pi(x) = \frac{p(x)}{\max_{x \in \Theta_{\mathcal{D}}} p(x)} \iff p(x) = \frac{\pi(x)}{\sum_{x \in \Theta_{\mathcal{D}}} \pi(x)}$$

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Networks

Key Concepts:

Valuation functions = Possibility functions Operations adhere to Possibility Theory

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Networks

Key Concepts:

Valuation functions = Possibility functions Operations adhere to Possibility Theory

Possibilistic Combination^[1]:

Given $\pi_1^{\mathcal{D}}$ and $\pi_2^{\mathcal{D}}$ representing valuations φ_1 and φ_2 then:

$$\left(\pi_1^{\mathcal{D}} \oplus \pi_2^{\mathcal{D}}\right)(a) = \frac{\pi_1^{\mathcal{D}}(a) \cdot \pi_2^{\mathcal{D}}(a)}{\max_{a \in \Theta_{\mathcal{D}}} \left\{\pi_1^{\mathcal{D}}(a) \cdot \pi_2^{\mathcal{D}}(a)\right\}}, \quad \forall \quad a \in \Theta_{\mathcal{D}}$$

Possibilistic Marginalization^[1]:

Given $\pi^{\mathcal{D}}$ then marginalization onto a coarser domain $\mathcal{D}' \subseteq \mathcal{D}$ is: $\pi^{\downarrow \mathcal{D}'}(a) = \max_{b \in \Theta_{\mathcal{D}}} \left\{ \pi^{\mathcal{D}}(a, b) \right\}, \quad \forall \quad a \in \Theta_{\mathcal{D}'}.$

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Networks

Key Concepts:

Valuation functions = Possibility functions Operations adhere to Possibility Theory

Possibilistic Combination^[1]:

Given $\pi_1^{\mathcal{D}}$ and $\pi_2^{\mathcal{D}}$ representing valuations φ_1 and φ_2 then:

$$\left(\pi_1^{\mathcal{D}} \oplus \pi_2^{\mathcal{D}}\right)(a) = \frac{\pi_1^{\mathcal{D}}(a) \cdot \pi_2^{\mathcal{D}}(a)}{\max_{a \in \Theta_{\mathcal{D}}} \left\{\pi_1^{\mathcal{D}}(a) \cdot \pi_2^{\mathcal{D}}(a)\right\}}, \quad \forall \quad a \in \Theta_{\mathcal{D}}$$

Possibilistic Marginalization^[1]:

Given $\pi^{\mathcal{D}}$ then marginalization onto a coarser domain $\mathcal{D}' \subseteq \mathcal{D}$ is:

$$\pi^{\downarrow \mathcal{D}'}(a) = \max_{b \in \Theta_{\mathcal{D}}} \left\{ \pi^{\mathcal{D}}(a, b) \right\}, \quad \forall \quad a \in \Theta_{\mathcal{D}'}.$$

$\, \hookrightarrow \,$ Operations satisfy axioms for local computation

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Uncertain Implication Rules

Given outcomes $a \in \Theta_{\mathcal{D}_1}$ and $b \in \Theta_{\mathcal{D}_2}$:

Rule allows evaluation of expert knowledge of the form "if a then b" with an associated confidence level $[\alpha, \beta]$, where $0 \le \alpha \le \beta \le 1$.

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Uncertain Implication Rules

Given outcomes $a \in \Theta_{\mathcal{D}_1}$ and $b \in \Theta_{\mathcal{D}_2}$:

Rule allows evaluation of expert knowledge of the form "if a then b" with an associated confidence level $[\alpha, \beta]$, where $0 \le \alpha \le \beta \le 1$.

We formulate possibilistic rule based on:

- If $a^c \implies$ Complete ignorance on outcomes in $\Theta_{\mathcal{D}_2}$
- If a and $b \implies$ Confidence in outcome $\max([\alpha, \beta]) = \beta$
- If a and $b^c \implies \text{Confidence in outcome } \max([1-\beta, 1-\alpha]) = 1-\alpha$
- Normalise outcomes dependent on a

Possibility Theory Possibilistic Networks Implication Rule

Possibilistic Uncertain Implication Rules

Given outcomes $a \in \Theta_{\mathcal{D}_1}$ and $b \in \Theta_{\mathcal{D}_2}$:

Rule allows evaluation of expert knowledge of the form "if a then b" with an associated confidence level $[\alpha, \beta]$, where $0 \le \alpha \le \beta \le 1$.

Thus we propose:

$$\pi_R^{\mathcal{D}_1 \times \mathcal{D}_2}(c) = \begin{cases} \beta K^{-1} & \text{if } c = a \times b\\ (1 - \alpha) K^{-1} & \text{if } c = a \times b^c\\ 1 & \text{if } c = a^c \times \Theta_{\mathcal{D}_2} \end{cases}$$

where $K = \max(\beta, 1 - \alpha)$ and \times represents the Cartesian product.

Comparing Networks using the Captain's Problem

Scenario A - using only prior information:

Prior Information

- 1 Arrival delay (A) is due to departure delay (D) and the travel delay (T).
- In 90% of the cases, departure delay (D) is caused by loading delays (L) or by engine service (S).
- In 90% of the cases, travel delay (T) is caused by bad weather (W) or by unplanned repairs (R) at sea.
- 4 A repair (R) is required in 50% to 70% of the trips if a service (S) has not been performed prior to travel.

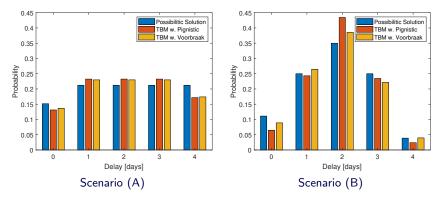
Scenario B - using prior and additional information:

Additional Information

- **5** Chance of 1 day loading delay is 30% to 50%.
- 6 The engine service has been skipped.
- 7 Forecast 60% to 90% chance of bad weather on sea.

Results - Scenarios A & B

Comparing possibilistic and evidential networks:

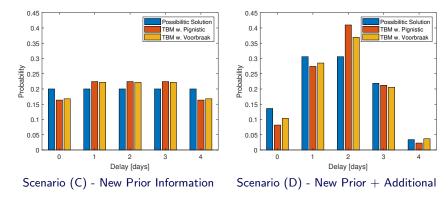


 \hookrightarrow Prior information fairly uninformative on its own Using additional information \implies All networks predict 2 days delay

TBM w. Pignistic = evidential network using Pignistic transform TBM w. Voorbraak = evidential network using Voorbraak transform

Results - Probing Network Performance

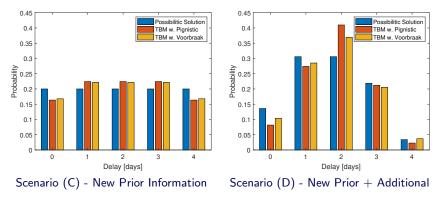
Change implication rule in the prior information:



 $\, \leftrightarrow \,$ A repair is required 30% to 70% of the trips if no service

Results - Probing Network Performance

Change implication rule in the prior information:



$\hookrightarrow\,$ A repair is required 30% to 70% of the trips if no service

 \hookrightarrow Change in prediction for the possibilistic network

Further Analysis...

Determine the probability of requiring a repair at set by analysing the local network relating S and R:

VBS Network	Scenario (B)		Scenario (D)	
	Repair	No Repair	Repair	No Repair
Possibilistic Evidential with Pignistic Evidential with Voorbraak	$0.583 \\ 0.750 \\ 0.667$	$0.417 \\ 0.250 \\ 0.333$	$0.500 \\ 0.650 \\ 0.588$	$0.500 \\ 0.350 \\ 0.412$

 $\, \hookrightarrow \,$ Difference in behaviour due to uncertain implication rule

Conclusions & Future Work

Conclusions

- Focus on reasoning in uncertain multivariate systems
 - \blacksquare Model system \implies Valuation base algebra framework
 - \blacksquare Model uncertainty \implies Possibility theory or DS evidence theory
- Presented possibilistic VBA network
 - Valuations and operations adhere to Possibility theory
 - Proposed possibilistic uncertain implication rule
- Compared evidential & possibilistic networks on Captain's Problem
 - Possibilistic network sensitive to changes in implication rule

Future Work

Open problem:

 $\hookrightarrow~$ Develop a framework for evaluating VBS networks

Thank you for listening