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Uncertain Reasoning
Captain’s Problem

Real World Reasoning and Decision Making...

Some challenges:

Data

Heterogeneous in nature:

Sensory measurements

Domain knowledge

Human originated
observations

Contextual information

Uncertainty

Various types[1]:

Randomness

Incompleteness

Ambiguity

Fuzziness

Systems

High complexity:

Multivariate

High connectivity

e.g.

– Threat assessment

– System reliability

Our approach:

# Model multivariate systems using Valuation Algebra Networks

# Construct reasoning networks using different models of uncertainty
e.g. Possibility Theory and Dempster-Shafer Evidence Theory

[1] R. Kruse et. al., ‘Uncertainty and vagueness in knowledge based systems: numerical methods’, Springer, 2012.
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Uncertain Reasoning
Captain’s Problem

An example - The Captain’s Decision Problem[1]

Estimate the number of days a ship will be delayed based on the following

Prior Information

1 Arrival delay (A) is due to departure delay (D) and the travel delay (T).

2 In 90% of the cases, departure delay (D) is caused by loading delays (L)
or by engine service (S).

3 In 90% of the cases, travel delay (T) is caused by bad weather (W) or by
unplanned repairs (R) at sea.

4 A repair (R) is required in 50% to 70% of the trips if a service (S) has not
been performed prior to travel.

Additional Information

5 Chance of 1 day loading delay is 30% to 50%.

6 The engine service has been skipped.

7 Forecast 60% to 90% chance of bad weather on sea.

[1] R. G. Almond, ‘Graphical Belief Modeling ’, Chapman and Hall, 1995.
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Modelling Systems
Quantifying Uncertainty

Valuation Based Algebra[1]

A framework for representing knowledge and inferring outcomes within a
system

Operations for inferring outcomes:

1 Combination - ⊕
2 Marginalization - ↓

e.g. Captain’s Decision Problem

L

ϕ1

S

D

A

T

R W

ϕ5 ϕ6

ϕ2

ϕ4

ϕ3

ϕ7

Decision Variable

Inference = Successive application of combination & marginalization

# e.g. end goal is to obtain (ϕ1 ⊕ ϕ2 ⊕ . . .⊕ ϕ7)↓A

If {⊕, ↓} satisfy a set of axioms[2] = marginal can be computed locally!

[1] P. Shenoy, ‘A valuation-based language for expert systems’, Int. J. Approx. Reason., 1989.
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Quantifying Uncertainty in a System

# Specifying the valuation functions and the operations ⊕, ↓

Many approaches to modeling uncertainty:

Probability theory

Possibility theory[1]

Imprecise probabilities[2]

Random sets[3]

Dempster-Shafer (DS) evidence theory[4,5]

...

Compare two approaches:

VBA using DS evidence theory =⇒ Evidential Networks[6]

VBA using Possibility theory =⇒ Possibilistic Networks (our focus)

[1] L. Zadeh, ‘Fuzzy sets as a basis for a theory of possibility ’, Fuzzy Sets and Systems, 1978.
[2] P. Walley, ‘Statistical reasoning with imprecise probabilities’, Chapman & Hall, 1991.
[3] R. Mahler, ‘Statistical multisource-multitarget information fusion’, Artech House Pub., 2007.
[4] A. Dempster, ‘Upper and lower probabilities induced by a multivalued mapping ’, Annals Math. Stat., 1967.
[5] G. Shafer, ‘A mathematical theory of evidence’, Princeton Uni. Press, 1976.
[6] A. Benavoli et. al., ‘An application of evidential networks to threat assessment’, IEEE Trans. Aerosp. Electron. Syst., 2009.
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Possibility Theory
Possibilistic Networks
Implication Rule

Recap on Zadeh’s Possibility Theory

Principle of minimal specificity

Unless impossible, no hypothesis can be ruled out

Measuring Possibility

Given a set of variables D with configurations ΘD:

# possibility of an event A ⊆ ΘD is the mapping Π : 2ΘD → [0, 1]

where 2ΘD is the power set of ΘD.

Π satisfies:

1 Π(∅) = 0 → ΘD is an exhaustive set of configurations

2 Π(ΘD) = 1 → mapping Π is free of contradictions

3 Π(A1 ∪A2) = max(Π(A1),Π(A2)) → replaces the additivity axiom
in probability theory.

Concept of Necessity N :

Necessity is the dual of possibility such that

N(A) = 1−Π(Ac), where Ac is the complement of A
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Possibility Functions

Possibility Functions

A function π : ΘD → [0, 1] such that, for A ⊆ ΘD:

Π(A) = max
x∈A

π(x) and N(A) = min
x∈Ac

(1− π(x))

Properties:

π(x) = 1 for x = x0 and 0 otherwise =⇒ Complete knowledge

π(x) = 1, ∀x ∈ ΘD =⇒ Complete ignorance

Relationship to a probability function p(x):

π(x) =
p(x)

maxx∈ΘD p(x)
⇐⇒ p(x) =

π(x)∑
x∈ΘD

π(x)
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Possibilistic Networks

Key Concepts:

{
Valuation functions = Possibility functions

Operations adhere to Possibility Theory

Possibilistic Combination[1]:

Given πD1 and πD2 representing valuations ϕ1 and ϕ2 then:(
πD1 ⊕ πD2

)
(a) =

πD1 (a) · πD2 (a)

maxa∈ΘD

{
πD1 (a) · πD2 (a)

} , ∀ a ∈ ΘD

Possibilistic Marginalization[1]:

Given πD then marginalization onto a coarser domain D′ ⊆ D is:

π↓D
′
(a) = max

b∈ΘD

{
πD(a, b)

}
, ∀ a ∈ ΘD′ .

# Operations satisfy axioms for local computation

[1] P. Shenoy, ‘Using possibility theory in expert systems’, Fuzzy Sets and Systems, 1992.
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Possibilistic Uncertain Implication Rules

Given outcomes a ∈ ΘD1
and b ∈ ΘD2

:

Rule allows evaluation of expert knowledge of the form “if a then b” with
an associated confidence level [α, β], where 0 ≤ α ≤ β ≤ 1.

We formulate possibilistic rule based on:

If ac =⇒ Complete ignorance on outcomes in ΘD2

If a and b =⇒ Confidence in outcome max([α, β]) = β

If a and bc =⇒ Confidence in outcome max([1−β, 1−α]) = 1−α

Normalise outcomes dependent on a

Thus we propose:

πD1×D2

R (c) =


βK−1 if c = a× b
(1− α)K−1 if c = a× bc

1 if c = ac ×ΘD2

where K = max(β, 1− α) and × represents the Cartesian product.
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Comparing Networks using the Captain’s Problem

Scenario A - using only prior information:

Prior Information

1 Arrival delay (A) is due to departure delay (D) and the travel delay (T).

2 In 90% of the cases, departure delay (D) is caused by loading delays (L)
or by engine service (S).

3 In 90% of the cases, travel delay (T) is caused by bad weather (W) or by
unplanned repairs (R) at sea.

4 A repair (R) is required in 50% to 70% of the trips if a service (S) has not
been performed prior to travel.

Scenario B - using prior and additional information:

Additional Information

5 Chance of 1 day loading delay is 30% to 50%.

6 The engine service has been skipped.

7 Forecast 60% to 90% chance of bad weather on sea.
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Results - Scenarios A & B

Comparing possibilistic and evidential networks:
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Scenario (A)
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Scenario (B)

# Prior information fairly uninformative on its own
Using additional information =⇒ All networks predict 2 days delay

TBM w. Pignistic = evidential network using Pignistic transform

TBM w. Voorbraak = evidential network using Voorbraak transform
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Results - Probing Network Performance

Change implication rule in the prior information:

0 1 2 3 4

Delay [days]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

b
a
b
ili

ty

Possibilitic Solution

TBM w. Pignistic

TBM w. Voorbraak

Scenario (C) - New Prior Information
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Scenario (D) - New Prior + Additional

# A repair is required 30% to 70% of the trips if no service

# Change in prediction for the possibilistic network
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Scenario (C) - New Prior Information
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Scenario (D) - New Prior + Additional

# A repair is required 30% to 70% of the trips if no service

# Change in prediction for the possibilistic network
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Further Analysis...

Determine the probability of requiring a repair at set by analysing the local
network relating S and R:

VBS Network
Scenario (B) Scenario (D)

Repair No Repair Repair No Repair

Possibilistic 0.583 0.417 0.500 0.500
Evidential with Pignistic 0.750 0.250 0.650 0.350
Evidential with Voorbraak 0.667 0.333 0.588 0.412

# Difference in behaviour due to uncertain implication rule
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Conclusions & Future Work

Conclusions

Focus on reasoning in uncertain multivariate systems

Model system =⇒ Valuation base algebra framework
Model uncertainty =⇒ Possibility theory or DS evidence theory

Presented possibilistic VBA network

Valuations and operations adhere to Possibility theory
Proposed possibilistic uncertain implication rule

Compared evidential & possibilistic networks on Captain’s Problem

Possibilistic network sensitive to changes in implication rule

Future Work

Open problem:

# Develop a framework for evaluating VBS networks
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The End

Thank you for listening
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