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Abstract—Realistic reasoning applications typically involve
many interrelated variables and require the interpretation of
data that is both heterogeneous in nature and affected by
various types of uncertainty. Accordingly, in this paper we
investigate the performance of valuation based algebra networks
for reasoning in uncertain multivariate systems. Specifically,
we consider networks built from two different approaches to
modelling uncertainty: possibility theory and Dempster-Shafer
evidence theory. To compare these differing networks, we propose
a new possibilistic counterpart to the uncertain implication
rule that exists in evidential networks. Using the Captain’s
decision problem, we analyse the performance of these networks
when estimating the number of days a ship will be delayed
based on a mixture of uncertain knowledge. We demonstrate
that the evidential network is more cautious to changes in
uncertainty whereas the possibilistic network is more sensitive.
This characteristic could allow the possibilistic network to be
used to perform sensitivity analysis on a system.

Index Terms—Computational intelligence, Uncertain multi-
variate systems, Valuation Based Algebra, Possibility Theory,
Evidence Theory, Dempster-Shafer

I. INTRODUCTION

We live in the era of data explosion, where increasingly
we rely on machine intelligence for reasoning and decision
making. However, such reasoning and decision making is
difficult: The data available for reasoning can appear in many
forms, such as sensory measurements, prior domain knowl-
edge, human originated observations (spoken or written), or
contextual information. Moreover, in most cases, the available
data is affected by uncertainty caused by various sources:
randomness, incompleteness, ambiguity, or fuzziness [1]. Fur-
thermore, realistic reasoning applications typically involve an
interplay of many variables, connected in a network which
codifies the relationship between them. Examples of requir-
ing such reasoning over multivariate systems include threat
assessment in defence [2], system reliability evaluation [3]
and cyber-security [4]. In this paper, we focus on a particular
framework for performing reasoning in uncertain multivariate
systems known as valuation algebra.

First proposed in [5], valuation algebra is a framework for
representing knowledge and inferring outcomes within a sys-
tem. The primary elements of the framework are the variables
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within the system, which we wish to make inferences on, and
a set of functions known as valuations that represent some
knowledge about the relationship between variables. Given
these primary elements, inferences are made by manipulating
the set of valuations using two operations: marginalization
and combination. Informally, combination represents the ag-
gregation of knowledge and marginalization corresponds to the
focusing of knowledge [6]. The process of reasoning is thus
the process of marginalizing the combined valuation for each
variable in the system [7]. For reference, valuation algebra is
a particular form of information algebra introduced in [8]; for
a survey see [9].

In order to develop algorithms or networks for reasoning
using valuation algebra we need to quantify the uncertainty
in the system, i.e. specify the valuation functions. Many
uncertainty calculi have been developed for mathematical
modelling and processing of uncertain information, such as
the probability theory, the theory of possibility [10], imprecise
probability theory [11], random set theory [12], Dempster-
Shafer (DS) evidence theory [13], [14], etc. Importantly,
Shenoy and Shafer [15] established a set of axioms that
permit marginalization and combination to be performed via
local computations, thus allowing reasoning over multivariate
systems to performed in a local, tractable, manner. Among
the uncertainty calculi listed, Shenoy and Shafer [15] showed
that probability theory, possibility theory and DS evidence
theory satisfy the required axioms. Note that reasoning val-
uation algebra networks that satisfy these axioms are referred
to as valuation-based systems (VBS). As a consequence, it
is possible to construct differing reasoning networks using
different uncertainty calculi.

In this paper we compare two types of valuation based
algebra networks, which differ in the way uncertainty is
represented and processed. The first network is based on using
possibility theory, which we term the possibilistic network,
and the second uses DS evidence theory, hence an evidential
network. The framework for a VBS evidential network has
previously been proposed in [2], [16] however only a par-
tial possibilistic network exists [7], [17], [18]. Specifically,
there is no possibilistic counterpart to the evidential uncertain
implication rule; an example of such a rule is “if A then
B” with a confidence interval. Accordingly, we present a



new possibilistic transformation for evaluating implications
rules allowing direct comparison with the evidential network.
Given these networks, we compare the performance using
the Captain’s decision problem [19]. This problem involves
estimating the number of day a ship will be delayed based
on a mixture of uncertain knowledge. Using this problem we
probe how the networks react to changes in the amount of
uncertainty. Our simulations shows that the evidential network
is generally more cautious than the possibilistic network. In
particular, we show that the possibilistic network is more
sensitivity to changes in the implication rule.

The paper is organized as follows. In Section II we out-
line the Captain’s decision problem to motivate reasoning in
uncertain multivariate systems. We then in Section III detail
valuation based algebra and introduce the framework for an
evidential network in Section IV. Next, in Section V, we
introduce the framework for a possibilistic network, in partic-
ular presenting our possibilistic implication rule. Finally, we
present the results of the networks on the Captain’s problem
in Section VI and end with conclusions.

II. CAPTAIN’S DECISION PROBLEM

To motivate the use of VBA networks, we now introduce
the Captain’s decision problem [19]. This problem entails a
Captain estimating the number of days their ship will be
delayed based on uncertain and incomplete knowledge. The
knowledge available for reasoning is split into two groups:
Prior information and Additional information. The prior in-
formation available to the Captain is as follows:

1) Arrival delay (A) is due to departure delay (D) and the
travel delay (T ).

2) In 90% of the cases, the departure delay (D) is caused
by unexpected difficulties in loading (L) the cargo, or
by engine service (S).

3) In 90% of the cases, the travel delay (T ) is due to bad
weather (W ) or unplanned repairs (R) on the sea.

4) A repair on sea (R) is required in 50% to 70% of the
trips, if the service (S) has not been carried out prior to
the travel.

Next, the additional information, received some time before
the departure is:

5) The chance of a one-day loading delay is 30% to 50%.
6) The captain of the ship has decided to skip the engine

service on this occasion.
7) According to the weather forecast, there is 60% to 90%

chance of bad weather on sea.
In the proceeding we will introduce a possibilitic VBA net-
work for solving this problem and analyse the results.

III. VALUATION BASED ALGEBRA

In this section we will now flesh out the mathematical de-
tails behind the elements and operations required in valuation
algebra.

The set of all variables in the system for reasoning is defined
as the set V . The set of possible values of a set of variables
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Fig. 1: A graphical representation of the valuation algebra for the Captain’s
Decision problem described in Section II and analysed in VI.

D ⊆ V is denoted ΘD = ×{Θx : x ∈ D}, where× represents
the Cartesian product, and is referred to as the configurations
of D. Given these variables, the function ϕ is a valuation
that represents some knowledge about the relationship among
a set of variables D, where D ⊆ V . The domain of this
valuation is the set of variables D and is obtained using a
labeling operation d : ϕ→ 2V , e.g. d(ϕ) = D. The set of all
valuations ϕ whose domain is d(ϕ) = D is denoted ΦD. By
extension, the set of all valuations with d(ϕ) ⊆ V is denoted
Φ = ∪{ΦD : D ⊆ V}. These concepts can be represented
as a graph as illustrated in Fig. 1. The circles represent the
variables within the system and the diamonds represent the
valuations that link the variables. The domain of a valuation
is thus the connected variables. Note that the decision variable,
i.e. the variable we wish to infer on, is highlighted in red.

The problem of inference is first to combine all of the
valuations and then marginalize this joint valuation to a subset
of the variables that we are interested in. To perform such
a task, we need to define the operations combination and
marginalization that can be performed on the valuations:

1) Combination - is a binary operation defined as ⊕ :
Φ×Φ→ Φ such that, if ϕ1, ϕ2 ∈ Φ are two valuations,
then the combined valuation ϕ1 ⊕ ϕ2 represents the
aggregated knowledge from ϕ1 and ϕ2.

2) Marginalization - is a binary operation ↓: Φ×2V → Φ
such that, if ϕ ∈ Φ is a valuation and D = d(ϕ) \ U ,
where U ⊆ V and \ denotes the set minus operation,
then the marginalized valuation ϕ↓D represents the
knowledge about the variables D implied by ϕ if we
disregard the variables in U [7].

Using these operations, a straightforward approach to infer-
ence is to first compute the joint valuation ⊕Φ = ϕ1⊕· · ·⊕ϕr,
assuming a finite set of valuations Φ = {ϕ1, . . . , ϕr}, and then
to marginalize it to the domain of interest Do. The problem
with this approach however is that the number of variables
increases with each combination. For example, if there are n
variables in V and the cardinality of the configuration space
for each variable is m, then the configuration of joint domain
of all variables, ΘV , has a cardinality of mn, which soon
becomes intractable to calculate.

The solution to this problem is to compute the marginal
(⊕Φ)

↓Do

on local domains and obtain the same result without
having to compute ⊕Φ explicitly. This local approach is
acceptable if, and only if, the labeling, combination and



marginalization operations satisfy a set of axioms [8], [15],
[20], [21]. A detailed list and explanation of the axioms is
given [8], [22]. If the operations satisfy the required axioms
then the system {V,Φ, d,⊕, ↓} is referred to as a valuation
algebra system, i.e. a valuation-based system (VBS).

Finally, the process by which inference is performed in a
VBS is known as a Fusion algorithm [20], [21]; for a detailed
explanation we refer the reader to [21], [22]. In brief, fusion
algorithms work by successively eliminating all the variables
X ∈ N , where N = V \ Do is the set of variables which are
of no interest, such that one is left with the marginal relating
to Do. Interestingly, due to axioms of valuation algebra, the
order in which the variables are eliminated does not affect the
final result. However, different elimination sequences can have
different computational costs. Finding an optimal elimination
sequence is an NP-complete problem [20], but there exist
several heuristics methods [19], [23], [24].

IV. EVIDENTIAL NETWORKS

In the previous discussion we described VBS in the ab-
stract – a system {V,Φ, d,⊕, ↓} that satisfies certain axioms.
We now move to the concrete and introduce evidential net-
works [2], [22]. An evidential network is a VBS built using
Dempster-Shafer’s theory of evidence [13], [14]; the valuations
are expressed using belief functions and the operations used
to manipulate them adhere to the transferable belief model
(TBM) [25]. Note that the theory of evidence satisfies the
axioms of a valuation algebra [8]. In the following we review
the main components and tools required in an evidential
network described in [2], [16], [22]

We start by introducing belief functions. Let ΘD denote
the finite set of configurations for the variables in D in an
evidential network. Note that the elements of ΘD are assumed
to be mutually exclusive and exhaustive. The beliefs about the
true values of D are expressed on subsets A of ΘD using basic
belief assignments (BBA). The BBA mD is a multivariate
function on the domain D which assigns every subset A of
ΘD a value in [0, 1] such that mD : 2ΘD → [0, 1]. Note that
2ΘD is the power set of ΘD. Importantly, BBA’s satisfy the
following condition:

∑
A⊆ΘD

mD(A) = 1. The subsets A that
have a belief mD(A) > 0 are referred to as focal sets of the
BBA. Finally, the state of complete ignorance is denoted as
the vacuous BBA: mD(A) = 1 if A = ΘD.

Evidential Combination:
Using BBA’s, the combination operator is achieved using
Dempster’s rule of combination [13]. Formally, let ϕ1 and
ϕ2 represent two valuations with the same domain d(ϕ1) =
d(ϕ2) = D. The corresponding BBA’s mD1 and mD2 can be
combined using the following equation:

(
mD1 ⊕mD2

)
(A) =

∑
B∩C=A

mD1 (B) ·mD2 (C)

1−
∑

B∩C=∅
mD1 (B) ·mD2 (C)

(1)

where A,B,C⊆ΘD and ΘD is set of all configurations of D.

Evidential Marginalization:
Marginalization is the projection of a BBA onto a coarser
domain. Consider a valuation ϕ with a domain d(ϕ) = D
and a belief function mD. The marginalization of mD onto a
coarser domain D′ ⊆ D is defined as

m↓D
′
(A) =

∑
B↓A

mD(B) (2)

where the summation above is over all B ⊆ ΘD such that the
configurations in B reduce to the configuration in A ⊆ ΘD′

by the elimination of variables D \ D′.

Along with the above equations we require two additional
operations in order to perform inference in an evidential VBS
network. The first operation is known as vacuous extension
and is required if we need to combine two valuations ϕ1 and
ϕ2 with different domains d(ϕ1) = D1 and d(ϕ2) = D2.
The second operation is to convert uncertain implication rules
into valuations with a known belief function. Such rules allow
the expression of expert knowledge in the form “if A then
B” with a certain degree of confidence [2]. Note that, in
relation to the three cases of implication operations identified
in [26], our approach to this rule falls into the “classical view
of implication”.

Evidential Vacuous Extension:
Consider a valuation ϕ on a domain d(ϕ) = D1 with a BBA
mD1 . To combine this BBA with another defined on a domain
D2 such that D1 6= D2, we need the following operation to
extend the BBA onto the joint domain D1 ∪ D2:

mD1↑(D1∪D2)(C) =

{
mD1(A) if C = A×ΘD2

, A ⊆ ΘD1

0 otherwise
(3)

where ΘD1
and ΘD2

denote respectively the configuration sets
corresponding to the domains D1 and D2.
Remark: Marginalization is the inverse operation of vacuous
extension however, in general, vacuous extension is not the
inverse of marginalization.

Evidential Uncertain Implication Rule:
Finally, we review the evidential uncertain implication rule
proposed in [16]. The authors exploited the logical equivalence
of “A implying B” and “not A or B” to obtain a belief
function. Formally, consider two domains D1 and D2 related
by an implication rule R of the form:

A ⊆ ΘD1 ⇒ B ⊆ ΘD2 , (4)

where ΘD1
and ΘD2

are the corresponding configurations. Let
[α, β] represent the confidence interval for this rule where 0 ≤
α < β ≤ 1. The valuation representing this rule is expressed
on the joint space D1 ∪ D2 with the following BBA:

mD1×D2

R (C) =


α if C = (A×B) ∪ (Ac ×ΘD2

)

1− β if C = (A×Bc) ∪ (Ac ×ΘD2
)

β − α if C = ΘD1∪D2

(5)



where Ac is the complement of A in ΘD1
and Bc is the

complement of B in ΘD2 .

We conclude this section by noting that in order to make
decisions using evidential theory the belief functions needs
to be mapped to probabilities. Several transformations exist
however in this paper we shall focus on the pignistic [27] and
Voorbraak [28] transformations.

V. POSSIBILISTIC NETWORKS

In this section we now introduce a possibilistic network
for VBS whereby valuations are represented using possibility
functions and the combination and marginalization operations
adhere to possibility theory. An initial possibilistic VBS net-
work was proposed in [7], [17]. In particular, Shenoy [7]
proved that the possibilistic versions of combination and
marginalization satisfy the set of axioms required for local
computation of the marginal (⊕Φ)

↓Do

without having to
explicitly compute ⊕Φ. Accordingly, the following defini-
tions of possibilistic combination and marginalization form
a valid VBS and can be solved using a fusion algorithm.
To accompany these operations, we extend the possibilistic
network by proposing a possibilistic version of the uncertain
implication rule capable of dealing with interval uncertainties
(or confidence intervals). We also include possibilistic vacu-
ous extension. In the following we define these possibilistic
operations.

Similar to the previous section, we review the basics of
possibility theory introduced by Zadeh [10] and later expanded
upon in [29], [30]. Let ΘD denote the configuration set for
the variables in D – again each element in ΘD is assumed
mutually exclusive and exhaustive. The possibility measure of
an event A ⊆ ΘD is a mapping Π : 2ΘD → [0, 1], where
2ΘD is the power set of ΘD. This mapping Π satisfies the
following axioms: 1) Π(∅) = 0 – the set ΘD is an exhaustive
set of configurations; 2) Π(ΘD) = 1 – the mapping Π is free
of contradictions; 3) Π(A1 ∪ A2) = max(Π(A1),Π(A2)) –
this replaces the additivity axiom in probability theory.

Having introduced a measure of possibility, we can now
introduce a possibility function π : ΘD → [0, 1] such that

Π(A) = max
x∈A

π(x) (6)

for every A ⊆ ΘD. This function can be used to represent
a range of knowledge starting with complete knowledge,
where π(x) = 1 for x = x0 and 0 otherwise, to complete
ignorance, where π(x) = 1, ∀x ∈ ΘD. A possibility can be
converted to a probability and vice versa using the following
transformation:

π(x) =
p(x)

maxx∈ΘD p(x)
⇐⇒ p(x) =

π(x)∑
x∈ΘD

π(x)
. (7)

Importantly, in contrast with belief functions, possibility func-
tions operate on singletons only. Thus we can expect a
difference in behaviour when comparing evidential networks
to possibilistic ones.

Finally, to finish the review, we introduce the concept of
necessity – the dual of possibility. The duality of possibility

and necessity can be expressed by N(A) = 1−Π(Ac) where
Ac is the complement of A in ΘD. Importantly, a possibility
function π induces both Π, see (6) and N , as follows: N(A) =
minx∈Ac(1−π(x)). Accordingly, the necessity/possibility pair
can be interpreted as a lower and upper confidence in the sense
of Walley’s upper and lower previsions [11]. We shall use
this duality when dealing with knowledge represented using a
confidence interval.

Possibilistic Combination:
Consider two valuations ϕ1 and ϕ2 with the same domain
d(ϕ1) = d(ϕ2) = D. Let πD1 and πD2 be the possibility
functions representing valuations ϕ1 and ϕ2, respectively and
let ΘD represent the set of all configurations corresponding
to the domain D. The combination of the two possibility
functions is thus defined as:(
πD1 ⊕ πD2

)
(a) =

{
K−1πD1 (a) · πD2 (a) if K 6= 0

0 if K = 0
, (8)

∀a ∈ ΘD, where K is a normalisation constant defined as

K = max
a∈ΘD

{
πD1 (a) · πD2 (a)

}
.

Note that this constant is required so that the result of the
combination is a valid possibility function.
Remark: In Zadeh’s [10] possibility theory, the combination1

of two possibility functions can be achieved using either mini-
mization or multiplication. However, as pointed out in [20], in
both cases normalization is required to satisfy the VBS axioms
and minimization followed by normalization is not associative,
which is a requirement of another VBS axiom.

Possibilistic Marginalization:
Consider a valuation ϕ with a domain d(ϕ) = D and a
possibility function πD. Let D′ represent a coarser domain
such that D′ ⊆ D and let ΘD and ΘD′ represent respectively
the set of all configurations corresponding to the domains D
and D′. The marginalization of the possibility function onto
the domain D′ is defined as:

π↓D
′
(a) = max

b∈ΘD

{
πD(a, b)

}
, ∀ a ∈ ΘD′ . (9)

Remark: In Zadeh’s [10] possibility theory marginalization is
referred to as projection.

Possibilistic Vacuous Extension:
Consider a valuation ϕ with a domain d(ϕ) = D1 and a possi-
bility function πD1 . Let D2 represent a different domain such
that D1 6= D2 and let ΘD1

and ΘD2
represent respectively

the set of all configurations corresponding to the domains D1

and D2. The vacuous extension of the possibility function πD1

onto the domain D1 ∪ D2 is defined as:

πD1↑(D1×D2)(c) =

{
πD1(a) if c = a×ΘD2

, a ∈ ΘD1

0 otherwise.
(10)

1Combination is termed particularization by Zadeh [10].



TABLE I: List of variables in the Captain’s Decision Problem.

Variable Name Notation Possible Configurations

Loading delay L ΘL = {0, 1}
Service S ΘS = {0, 1}
Weather W ΘW = {0, 1}
Repair R ΘR = {0, 1}
Departure delay D ΘD = {0, 1, 2}
Travel delay T ΘT = {0, 1, 2}
Arrival delay A ΘA = {0, 1, 2, 3, 4}

Possibilistic Uncertain Implication Rule:
We now introduce our possibilistic uncertain implication rule.
The rule is devised by interpreting the associated confidence
interval as a necessity-possibility pair. Formally, consider two
domains D1 and D2 related by an implication rule R of the
form:

a ∈ ΘD1 ⇒ b ∈ ΘD2 . (11)

Note that as we are dealing with possibilities we have single-
tons. Again, let us associate the following confidence interval
[α, β] for this rule where 0 ≤ α < β ≤ 1. The valuation rep-
resenting this rule is expressed using the following possibility
function:

πD1×D2

R (c) =


βK−1 if c = a× b
(1− α)K−1 if c = a× bc

1 if c = ac ×ΘD2

(12)

where K = max(β, 1− α) and ΘD2 is the configurations for
D2. Note that the possibility for a × bc is obtained from the
necessity N(a, bc) = α.
Remark: Interestingly, in the possibility framework, the calcu-

lation of either the marginal
(
πD1×D2

R

)↓D1

or
(
πD1×D2

R

)↓D2

result in complete ignorance suggesting that, on its own, the
implication rule is uninformative.

VI. ANALYSIS OF THE CAPTAIN’S DECISION PROBLEM

In this section, we now analyse and compare the per-
formance of a possibilistic network to that of an evidential
network when solving the Captain’s Decision problem stated
in Section II. For completeness, we include the decisions
obtained from the evidential network when using either the
pignistic or Voorbraak transformation.

A. Posing the Problem

The full set of variables for the Captain’s problem is
V = {L, S,W,R,D, T,A} and each piece of prior and
additional knowledge represents a valuation such that Φ =
{ϕ1, ϕ2, . . . , ϕ7}. For reference, we shall refer to the set of
valuations corresponding to the prior knowledge as Φprior =
{ϕ1, . . . , ϕ4} and the valuations relating to additional knowl-
edge Φadd = {ϕ5, . . . , ϕ7}. The variables and their associated
possible configurations (expressed as the number of days of
delay) are listed in Table I. A graphical representation of the
valuation algebra for this example is shown in Fig. 1.

The next step is to convert the knowledge listed in the
problem into valuations represented by functions. Note that,
for brevity, we detail this process for the possibilistic network

only. Let us start by defining the corresponding possibility
functions in Φprior. The first possibility function, π1, is ex-
pressed over the space ΘD×T×A = {(d, t, a) : d ∈ ΘD; t ∈
ΘT ; a ∈ ΘA} and defined as:

π1(d, t, a) =

{
1 if d+ t = a

0 otherwise.

The second possibility function, π2, is expressed over the
space ΘL×S×D = {(l, s, d) : l ∈ ΘL; s ∈ ΘS ; d ∈ ΘD}
and defined as:

π2(l, s, d) =

{
1 if l + s = d

1/9 otherwise.

The third possibility function, π3, is expressed over the space
ΘW×R×T = {(w, r, t) : w ∈ ΘW ; r ∈ ΘR; t ∈ ΘT } and takes
the same form as π2, that is:

π3(w, r, t) =

{
1 if w + r = t

1/9 otherwise.

The fourth possibility function, π4, is expressed over the space
ΘS×R = {(s, r) : s ∈ ΘS ; r ∈ ΘR} and is obtained using
the uncertain implication rule (12). The rule states that with
confidence [0.5, 0.7] s = 0 ⇒ r = 1. Thus, α = 0.5 and
β = 0.7, resulting in

π4(s, r) =

{
0.5/0.7 if (s, r) = (0, 0)

1 otherwise.

Considering the additional knowledge valuations Φadd, the
possibility function π5 is expressed over ΘL and is defined as

π5(l) =

{
1 if l = 0

5/7 if l = 1.

This function is obtained by converting an interval probability
to a possibility. The sixth possibility function π6 is expressed
over ΘS and corresponds to an exact, certain, statement.
Accordingly, the function represents complete knowledge:

π6(s) =

{
1 if s = 0

0 if s = 1.

Finally, the seventh possibility function π7 is expressed over
ΘW and again the corresponding piece of information involves
an interval probability thus we have:

π7(w) =

{
4/9 if w = 0

1 if w = 1.

Given the possibility functions defined above and the equiv-
alent functions for the evidential networks, we can now use a
fusion algorithm to obtain the posterior probabilities for each
element in ΘA.
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Fig. 2: Comparison of the probabilities associated with arrival delay for the Captain’s decision problem computed using three different VBS networks: a
possibilistic network, an evidential network with the pignistic transform (TBM w Pignistic), and an evidential network with the Voorbraak transform (TBM
w Voorbraak) . Graphs (a) and (b) correspond to original problem description in Section II and graphs (c) and (d) correspond to the same problem but
with probability interval on statement 4 changed to 30% to 70%. Graphs (a) and (c) shows the results when only prior knowledge is used to compute the
probabilities and graphs (b) and (d) shows the results when prior and additional knowledge is used.

B. Simulation Results

We start by considering the performance of the networks
on two scenarios: (i) using only the prior knowledge Φprior
and assuming complete ignorance for the valuations in Φadd;
(ii) using both prior knowledge Φprior and the additional
knowledge Φadd. The resulting probabilities for each scenario,
using each type of network, are shown in Fig. 2; the graph in
Fig. 2(a) corresponds to scenario (i) and the graph in Fig. 2(b)
corresponds to scenario (ii).

The resulting probabilities illustrated in Fig. 2 show first that
the prior knowledge represented in Φprior on its own is fairly
uninformative. In contrast, the posterior probabilities relating
to the arrival delay dramatically change with the addition of
Φadd. This observation holds for all of the networks tested.

If we focus on the results for the possibilistic network. For
scenario (i), the probabilities associated with delays greater
than 1 day are all equal and higher than no delay whereas,
in scenario (ii), a delay of 2 days is most likely with
pposs(2) = 0.350. A similar pattern is observed when using the
evidential network. For scenario (i) a delay of 0 days is least
likely followed by a delay of 4 days then the rest are equally
likely. Likewise, for scenario (ii), the evidential networks find
a delay of 2 days is most likely; the probability using the
pignistic transform is ppig(2) = 0.434 whereas the Voorbraak
probability is pvoor(2) = 0.386. The graphs also show that
there is a slight difference between the Voorbraak and pignistic

probabilities but they are more similar to themselves than the
possibilistic probabilities. Overall, however, decisions based
on any of the networks will be similar for these scenarios.

To further probe the performance of the networks, we now
reduce the lower confidence in statement 4 of the Captain’s
Problem – the statement is now “A repair on sea (R) is required
in 30% to 70% of the trips, if the service (S) has not been
carried out prior to the travel” – and recalculate the posterior
probabilities. For these new simulations we refer to using only
Φprior and assuming complete ignorance for Φadd as scenario
(iii) and using the both sets of knowledge as scenario (iv). The
resulting probabilities for these new scenarios are also shown
in Fig. 2; the graph in Fig. 2(c) corresponds to scenario (iii)
and the graph in Fig. 2(d) corresponds to scenario (iv).

The resulting probabilities for these new scenarios again
show the benefit of the additional knowledge in decision
making. However, the distribution of the probabilities gen-
erated by the possibilistic network has changed compared to
the evidential networks. In scenario (iii), reducing the lower
confidence in the implication rule results in the possibilistic
network assigning an equal probability to all of the config-
urations in ΘA. Similarly, in scenario (iv), the possibilistic
network now predicts that a delay of 1 day is equally as
likely as a delay of 2 days; the corresponding probabilities
are pposs(1) = pposs(2) = 0.306. In contrast, although the
probabilities predicted by the evidential networks for each



TABLE II: Probability of requiring a repair at sea verses not
requiring one in the Captain’s problem.

VBS Network Scenario (ii) Scenario (iv)

Repair No Repair Repair No Repair

Possibilistic 0.583 0.417 0.500 0.500
Evidential with Pignistic 0.750 0.250 0.650 0.350
Evidential with Voorbraak 0.667 0.333 0.588 0.412

scenario have changed, their distribution is relatively similar
to the previous scenarios. As a consequence, decisions based
on the possibilistic network are now different than those based
on either evidential network.

This difference in behaviour stems from the implication
rules used in each network. The possibilistic rule assigns
values to each individual outcome whereas the evidential
rule assigns belief to overlapping sets of outcomes, including
complete ignorance. To examine the affect of these differing
approaches, let us consider just the valuations that relate
to the variables service S and repair R and determine the
probability of requiring a repair at sea by marginalizing to
R. The resulting probabilities for scenario (ii) and (iv) are
shown in Table II. The table shows that the evidential networks
are more cautious; they predict a repair is more likely in
both scenarios. In contrast, the possibilistic network initially
predicts a repair is more likely in scenario (ii) but then changes
to predict a repair being as likely as no repair in scenario
(iv). The possibilistic network is thus more sensitive to the
change in the implication rule than the evidential networks.
This sensitivity of the possibilistic network accounts for the
different probability distributions in Fig. 2.

VII. CONCLUSIONS

In this paper, we have investigated the performance of
valuation based algebra networks when making decisions in
multivariate systems. Specifically, we introduced VBS net-
works built from two uncertainty calculi: possibility theory
and Dempster-Shafer evidence theory. For the possibilistic
network, we presented a new transformation for converting
uncertain implication rules into a possibility function, which
allowed the network to evaluate statements such as “if a then
b” with a certain confidence interval. The performance of these
networks were then analysed when estimating the delay arrival
(in days) in the Captain’s decision problem. In more detail,
we simulated four scenarios of the problem with differing
amounts of uncertainty. Our simulation results showed that
the possibilistic network was more sensitive to changes in the
uncertain implication rule than the evidential network. Such a
trait could be advantageous when analysing the sensitivity of
a system to changes in uncertainty, i.e. testing how robust a
system is. In future work we intend to investigate this potential
application and develop a general framework for evaluating
VBS networks, which is currently an open problem.
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