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ABSTRACT
Image registration is a significant step in a wide range of prac-
tical applications and it is a fundamental problem in various
computer vision tasks. In this paper, we propose a highly
accurate and fast parametric registration method for mobile
phone photos. The proposed algorithm is based on a fast
and accurate elastic registration algorithm, the Local All-Pass
(LAP) algorithm, which performs in a coarse-to-fine manner.
At each iteration, the LAP displacement field is fitted by a
parametric model. Thus the image registration problem is
equivalent to finding a few parameters to describe the dis-
placement field. The fitting step can be performed very ef-
ficiently by solving a linear system of equations. In terms of
the fitting model, it is easy to change the type of models to do
the parametric fitting for specific applications. Experimen-
tal results on both synthetic and real images demonstrate the
high accuracy and computational efficiency of the proposed
algorithm.

Index Terms— Image registration, Local All-Pass filters,
Parametric fitting, Elastic registration, Quadratic polynomial
function

1. INTRODUCTION

Image registration is the process of finding a geometric trans-
formation between two Cartesian coordinate systems so as to
align two or more images. Image registration plays a vital
role in medical analysis [1, 2], remote sensing [3], computer
vision [4] and many other fields. It is a fundamental problem
for various vision tasks, such as image mosaic, image fusion,
image super-resolution and video stabilization. In our daily
life, this process is necessary when we want to compare or in-
tegrate information from a sequence of images captured from
mobile phones.

Under the brightness constancy hypothesis [5], a pair of
images to be registered are related by a displacement field,

I1(x, y) = I2(x + ux(x, y), y + uy(x, y)), (1)
where I1 is regarded as the target image, I2 is the source im-
age, the complex number u(x, y) = ux(x, y) + iuy(x, y) is
the displacement field. Thus, the key task of image registra-
tion is to estimate u(x, y) such that I2 is aligned to I1. The
variables of (1) are shown in Fig. 1. The target image and
the source image are shown in parts (a) and (b), respectively.
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Fig. 1. The target image (a) is related to the source image (b)
through the displacement field (d) according to Equation 1.
An alternative representation to (a) and (b) is to blend these
images as in (c): target is orange-toned, source is blue-toned,
and perfect alignment is achieved when the blended image is
tone-neutral (i.e., gray).

A blending of these images is then illustrated in part (c) -
blue and orange tones illustrate mis-alignment. Finally, part
(d) illustrates the displacement field; the colour indicates the
direction of the displacement and the intensity of the colour
indicates it’s magnitude.

In this work, we target images captured by mobile phones
under a similar lighting condition and camera setting. So we
can safely assume the two images satisfy the brightness con-
stancy. Taking photos from different view points is the main
factor that generates geometric transformations. Because of
the rigid motion of phone cameras, the transformations are
global and rigid.

Various registration algorithms have been developed
by researchers in recent years. Pixel-based methods use
the intensity information of the whole image. Feature- or
landmark-based methods extract a number of correspond-
ing feature points or landmarks between a pair of images
to be registered. The SIFT-based feature matching methods
[6, 7, 8, 9], such as SURF [10], SIFT flow [11], CSIFT [12]
are popular because of their invariance to translation, rotation
and scaling. In general, the performance of these methods
depends heavily on the feature types, the accuracy of the fea-
ture detection, the number of feature points or landmarks as
well as the feature matching strategies. Feature-based meth-
ods may reduce the computational complexity and be able to
cope with images with large intensity differences, but they
usually perform poorly on feature-less images.

Image registration in essence is a mapping problem. Thus
the mapping model selection is a quite important step. Most



existing models involve a small number of parameters, often
modeling affine geometric transformations (shifts, rotations,
scale changes, shears) [13, 14, 15]. Hence, the registration
problem reduces to calculating very few parameters of the
model which is fast. However, the accuracy of these low-
order parametric methods is limited in real applications, even
for the image pairs taken by mobile phones, because they do
not model non-linear deformation effects. In order to cope
with local and complex transformations, non-parametric (or
high-order parametric) methods [16, 17, 18, 19, 20, 21, 22]
are adopted to generate dense displacement fields, but the al-
gorithms are prone to become unreliable and time consuming.

In most registration works, it is essential to optimize non-
linear objective functions to estimate the parameters. Hence,
the similarity measures and regularization are very important.
There are many kinds of similarity measures, including sum-
of-squared differences (SSD), normalized correlation coeffi-
cient (NCC) [23], correlation ratio (CR) and mutual informa-
tion (MI) [24, 25]. In terms of the SSD measurement, in-
tensity changes affect the similarity function. Mutual infor-
mation is one of the most common methods for multimodal
registration which needs heavy computation. The computa-
tion time and estimation accuracy are also closely related to
the regularization terms and the optimizing algorithm.

In this paper, we propose a highly accurate and fast para-
metric registration method for photos taken by mobile phones.
The proposed algorithm is based on a fast and accurate elas-
tic registration algorithm, the local all-pass filtering algorithm
(LAP), which performs in a coarse-to-fine hierarchical frame-
work [26, 27]. At each iteration, we use a a parametric model
to fit the displacement field estimated by the LAP. Thus the
image registration problem is equivalent to finding a few pa-
rameters to describe the displacement field. The fitting step
can be performed very efficiently by solving a linear system
of equations. In terms of the parametric model, it is flexi-
ble to choose simple or complex models to do parametric fit-
ting so as to deal with different types of displacement fields.
The proposed method improves the accuracy of registration
for mobile phone images comparing with the LAP algorithm.

2. LOCAL ALL-PASS REGISTRATION

The main idea of the LAP is that a constant shift is equiv-
alent to filtering with an all-pass filter under the condition
of brightness constancy, see Fig 2. The local displacement
within a window is estimated using a local all-pass filter. A
dense deformation estimate is then obtained by repeating this
process for every pixel in the image. The LAP algorithm is
implemented in a coarse-to-fine manner with respect to the fil-
ter size to deal with both large and small deformations. This
algorithm is termed as poly-filter LAP.

Compared with the state-of-the-art elastic registration
methods, the poly-filter LAP algorithm has significant advan-
tages. First, this algorithm is very fast and accurate when
the brightness constraint is exactly satisfied. In addition, it

Fig. 2. Diagram illustrating the equivalence of constant defor-
mation field and filtering with an all-pass filter in a window.
The symbol ∗ denotes the convolution operator and hL is the
local all-pass filter of the window. Note that the locations of
the two windows on the right-hand side and left-hand side are
exactly the same.

is robust to noise. However, it becomes inaccurate when the
illumination change violates the brightness constancy and the
deformation is very large. Moreover, pre- and post-processing
such as high-pass filtering, inpainting and smoothing are nec-
essary for this algorithm.

As a preliminar study to the current paper, we showed how
to increase the robustness of the registration by fitting itera-
tively a parametric expression to the output of the poly-filter
LAP and then repeating the process to refine the estimate of
model [28]. Such an approach however increases the com-
putation time significantly and is relatively inefficient. Ac-
cordingly, it is these shortcomings we wish to remedy in the
current paper.

3. REGISTRATION BY PARAMETRIC FITTING

In this section, we develop a method based on the LAP al-
gorithm for mobile phone image registration. The main idea
is to fit the output of the LAP at each iteration by a para-
metric model. Compared to [28] where the fitting is per-
formed after an application of the full poly-filter LAP, our
fitting is performed at each scale and the extrapolatory nature
of the parametric representation allows to get rid of all the
pre-processing, inpainting and post-processing steps that are
otherwise needed in the poly-filter LAP algorithm. Thus the
developed fitting algorithm is much more computationally ef-
ficient and, moreover, we observe that the accuracy achieved
is at least as high as the one in [28].

3.1. Displacement field fitting

In general, the displacement field can be expressed by a com-
bination of basis functions,

u(x, y) =

K∑
k=1

ckuk(x, y), (2)

where K is the total number of basis functions, ck are co-
efficients and uk(x, y) are a basis of elementary displace-
ments. Examples of such representations are global geomet-



ric transformations like linear transformations (shifts, rota-
tions, shears, scaling), more general polynomial or Fourier
series expressions, but also local transformations (e.g., ex-
pressed onto a local basis like a uniform B-spline basis [29])
and wavelet decompositions.

When it comes to registering images taken by a mobile
phone, the displacement field becomes much simpler. The
view point change causes rigid transformation which can be
modelled as a constant or a first order polynomial function.
To deal with more complicated situations, such as lens distor-
tion and slight perspective, a quadratic polynomial function is
sufficient to represent the transformation:

u(x, y) = c1 + c2x + c3y + c4x
2 + c5y

2 + c6xy, (3)
where c1, c2, c3, c4, c5 and c6 are unknown complex-valued
coefficients.

As far as the displacement field is concerned, estimating
the displacement on a global level boils down to calculating
the six coefficients in (3). They are obtained from minimizing
the difference between the displacement from the LAP, uLAP,
and u:

min
c1,c2,c3,c4,c5,c6

∑
x,y∈Ω

|u(x, y)− uLAP(x, y)|2, (4)

where Ω is the fitting region and it is described in the next part
in detail. The solution to (4) is equivalent to solving a linear
system of six equations which is quite fast, further avoid the
risk of being stuck into local minimums. Once the coefficients
are obtained, the dense displacement field is known.

The next step is to warp the source image closer to the
target image according to the estimated parametric displace-
ment field. Since the estimated displacement is non-integer,
it is essential to build a continuous model of image for image
warping. We adopt the shifted linear interpolation [30] for all
the LAP windows larger than 5 × 5 pixels to obtain a high
quality warped image while ensuring the high speed. How-
ever, at finer filter resolution, i.e. for LAP windows smaller
than or equal to 5 × 5 pixels, we use cubic-OMOMS inter-
polation [31]—more accurate, albeit somewhat slower. The
warped image is the new source image in the next iteration.

3.2. Fitting region determination

It is necessary to find the overlap regions between two images
to maximize the similarity measures. However, determining
reliable fitting regions and optimizing an objective function
is a chicken-and-egg problem since the accurate overlap re-
gion is only known after a successful registration. Thank to
the LAP algorithm, the errors in the displacement field are
detected, because the LAP algorithm tags the displacement
larger than the LAP resolution. Moreover, the pixels go out of
the boundary of target image after warping are also excluded
from the fitting region. Hence, the adaptive fitting region at
each iteration is determined, which avoids the influence of
outliers, shadows, artifacts and occlusions through the strat-

egy of erroneous exclusion. Although at the first iteration,
i.e. the coarsest level, the determined fitting region is quite
different from the true overlap region. As the iteration goes,
the determined fitting region becomes closer to the true over-
lap region. The global parametrization makes it possible to
extrapolate the displacement field from a limited region, and
this is particularly useful in the case of large deformations
where many algorithms usually fail. This strategy also has
the same effects as pre- and post-processing in the poly-LAP
algorithm.

4. EXPERIMENTAL RESULTS

In the experiments, registration methods are tested on syn-
thetic images, the Oxford affine dataset [32] and real im-
ages taken by mobile phones. We compared our method
with several existing state-of-the-art registration methods:
three global parametric methods including a method using
enhanced correlation coefficient maximization (ECC) [33],
a parametric method optimizing normalized total gradient
(NTG) [34], a method using a smoothly varying field to warp
and orient features between two images (LAFP) [39], and
seven well-known elastic image registration methods includ-
ing the poly-filter LAP algorithm [27], an intensity-based
image registration using residual complexity minimization
from the Medical Image Registration Toolbox (MIRT) [35],
the improved Demons algorithm based on the implementa-
tion in [36] and the elastic registration using a cubic B-spline
free form displacement model implemented in ImageJ (bUn-
warpJ) [18], an algorithm incorporating both geometric and
intensity transformation (GIT) [16], and a feature-based im-
age registration method, the SIFT flow method [11] and the
implementation freely available in the Elastix toolkit that
optimizing mutual information [37]. We implemented these
methods based on the publicly available codes and their de-
fault parameters.

For our algorithm, the iteration number was set to 3 at
each scale. The window size W of the finite impulse response
filters of the LAP is determined according to the size of im-
ages, specifically, it is set to one quarter of min(width, height)
of the image. All algorithms were run on an Intel Core i7-
5930K CPU @ 3.50 GHz with 64 GB RAM, using MATLAB
R2013b.

To validate the robustness and accuracy of our algorithm,
we first tested it on synthetic images (image source of size
512 × 768, taken from the LIVE data set [38]) deformed
by various smooth displacement fields like affine transforma-
tions and transformations described by quadratic polynomial
functions (maximum amplitude = 83 pixels). We also dis-
torted the warped images by adding noise (PSNR = 20 dB),
or by blurring them (variance = 5 pixel2). Typically, the Me-
dian Absolute Error (MAE) and the Average Absolute Error
(AAE) achieved by our algorithm were of the order 0.1 pix-
els in noisy conditions, while staying at 0.01 pixels in blurry
conditions. When the images where not distorted, our algo-



Table 1. Comparison on the Oxford affine dataset [32]
Bikes Trees Leuven

EMed EMean Time EMed EMean Time EMed EMean Time

Global This paper 0.45 0.55 9.7 1.39 1.68 8.7 0.20 0.27 7.1
algorithms ECC [33] 0.47 0.60 17.8 2.05 3.32 14.5 0.21 0.27 13.0

NTG [34] 0.87 0.98 15.5 1.71 1.97 15.6 0.62 0.89 32.9
LAFP [39] 1.79 2.58 1933.4 4.31 5.24 2330.9 1.14 1.57 1446.2

LAP [27] 0.63 0.78 11.3 1.69 3.22 9.4 0.33 0.43 7.9
Demons [36] 21.64 22.10 27.4 3.92 7.28 12.7 0.56 1.58 25.8

Elastic MIRT [35] 19.14 24.65 206.9 25.95 26.99 76.1 2.95 5.34 106.8
algorithms bUnwarpJ [18] 1.02 1.12 18.0 2.15 3.00 24.3 0.34 0.40 24.7

GIT [16] 1.38 3.84 982.9 2.18 4.66 962.0 0.48 0.96 948.7
SIFT flow [11] 0.85 1.94 84.7 2.50 5.70 86.2 0.55 0.80 66.3
Elastix [37] 6.69 12.38 299.9 3.78 10.17 319.5 0.44 1.46 307.0

(1) Bold values indicate the best results. (2) The results are calculated
in the common region and averaged over 5 different image pairs in each
subset.

rithm was almost exact (10−6 pixels) when we were using the
exact same interpolation method as the one used to warp the
images—and 0.01 pixels. The computation time was 8 sec-
onds.

To demonstrate the accuracy and efficiency of the our al-
gorithm in comparison with the state of the art, we tested our
method on the publicly available Oxford affine dataset (Miko-
lajczyk et al. [32]) and several real outdoor images captured
from iPhone, Huawei and Vivo smart camera phones (http:
//www.ee.cuhk.edu.hk/%7Exxzhang/welcome_
files/icip_exp.html) . The Oxford dataset includes
an estimate of the ground truth spatial transformation between
source and target images. We considered only three subsets
of this dataset, involving blur and illumination changes (the
other subsets involve displacements that are too extreme—1/3
to 1/2 of the image size—for all the compared image regis-
tration algorithms, including ours, to be successful). In order
for our algorithm (and the others) to deal with illumination
changes, we equalized the intensity of the source and target
images by matching their histogram. This pre-processing was
neutral for ECC, NTG, SIFT flow and Elastix (no benefit, no
loss compared to doing nothing), but was useful for the other
algorithms, including ours. The errors and computation time
of different methods are listed in Table 1. From this table
we can find that our method outperforms others in terms of
accuracy and computation time. The algorithm that achieves
results that are closest to ours is ECC. In relation to our pre-
vious work [28], the proposed algorithm obtains the same
accuracy for up to a fifth of the computation time.

The image pairs shown in Fig. 3 (a) were captured with
three different mobile phone cameras, from diverse view-
points. Here, apart from our algorithm, most other methods
fail to align these real images, although the geometric trans-
formations involved seem to include mainly shift, rotation,
scaling and a slight perspective. These examples demonstrate
the ability of our algorithm to deal with both small and large
geometric transformation, and show that its implementation
is very efficient.

PSNR = 15.8 dB ECC (37.2 dB, 6.6 s) ours (38.2 dB, 4.4 s)

PSNR = 13.8 dB GIT (22.0 dB, 3929.2 s) ours (22.4 dB, 60.1 s)

PSNR = 12.3 dB LAFP (21.5 dB, 1464.4 s) ours (27.4 dB, 38.6 s)

(a) (b) (c)

Fig. 3. Example of image registration on real images cap-
tured by three mobile phones. The images have been down-
scaled to 480 × 640 (top row), 1600 × 1600 (middle row),
and 960× 1280 (bottom rows). Column (a) shows the source
and target image. In column (b), we show the result of meth-
ods that perform best in terms of PSNR, with their PSNR and
computation time. (c) shows our results.

5. CONCLUSION

In this paper, we are proposing a very efficient and accurate
parametric registration algorithm for images acquired by con-
sumer cameras (e.g., mobile phones). The proposed algo-
rithm is based on a fast and accurate elastic registration al-
gorithm, the local all-pass filtering algorithm (LAP), which
is iterated from large to small filter sizes, in a coarse-to-fine
manner. At each iteration, the LAP displacement field is fitted
by a parametric model. Hence, the image registration prob-
lem boils down to finding a few parameters to describe the
displacement field. The fitting step can be performed very
efficiently by solving a linear system of equations. An impor-
tant advantage is that our image registration algorithm does
not need any extra pre-processing of the images nor post-
processing of the displacement field. We have demonstrated
that, on synthetic and real experiments our algorithm reaches
high sub-pixel alignment accuracy and is significantly faster
than other state-of-the-art algorithms.
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