
APPROXIMATION ORDER OF THE LAP OPTICAL FLOW ALGORITHM

Thierry Blu1, Pierre Moulin2, and Christopher Gilliam1

1Department of Electronic Engineering, The Chinese University of Hong Kong
2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

email: {tblu,cgilliam}@ee.cuhk.edu.hk, moulin@ifp.uiuc.edu

ABSTRACT

Estimating the displacements between two images is often ad-

dressed using a small displacement assumption, which leads

to what is known as the optical flow equation. We study the

quality of the underlying approximation for the recently de-

veloped Local All-Pass (LAP) optical flow algorithm, which

is based on another approach—displacements result from fil-

tering. While the simplest version of LAP computes only

first-order differences, we show that the order of LAP ap-

proximation is quadratic, unlike standard optical flow equa-

tion based algorithms for which this approximation is only

linear. More generally, the order of approximation of the

LAP algorithm is twice larger than the differentiation order

involved. The key step in the derivation is the use of Padé

approximants.

Index Terms— Optical flow, all-pass filtering, approxi-

mation, Padé approximant.

1. INTRODUCTION

The 2D optical flow problem consists in estimating space-

varying displacement vectors u(x, y) = (ux(x, y), uy(x, y))
T

that relate two known images I1(r) and I2(r); i.e., under the

ideal brightness consistency hypothesis [1]

I2(r) = I1(r− u(r))

where r = (x, y)T are spatial coordinates. This is a challeng-

ing problem that finds applications in a wide range of fields

like computer vision, medical imaging [2, 3], biology [4, 5],

and image compression. The dominant algorithms use ideas

that were initially proposed in the 1980s: first, linearising

the effect of small displacements to obtain the “optical flow

equation”. Then, using this equation as a data term in a

regularization functional to be minimized (Horn-Schunck ap-

proach [6]), or as a set of constraints to be fitted blockwise

using few parameters (Lucas-Kanade’s approach [7]).

The type of objective function that has to be minimized

in the Horn-Schunck approach has been the source of con-

stant developments: robust penalty terms [8, 9], L1 regular-
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ization [10, 11] and low-rank regularizers [12]. For a com-

plete review of the state-of-the-art see [13, 14, 15, 16, 17],

and, more recently, [1, 18].

In this paper, we are interested in the quality of approx-

imation underlying optical flow algorithms. Specifically, we

evaluate this quality for a new algorithm that models displace-

ments as local all-pass (LAP) filtering operation [19]. The

contribution of this paper is to analyze how the LAP algo-

rithm makes it possible to achieve a higher order of approxi-

mation than the algorithms based on the optical flow equation,

without requiring to compute higher order derivatives.

Note that this algorithm is not related to spatio-temporal

filtering algorithms [20, 21] which rely on the time variation

of the spatio-temporal Fourier phase of a sequence of images:

only spatial filters are involved in the LAP algorithm, and it is

between two images only that the displacement field is to be

estimated.

2. APPROXIMATION ORDER

Usual optical flow algorithms are based on an approximation

of the displacement by the vector field u(r). Using such an ap-

proximation is important in order to separate u(r) from f(r)
and so, to derive efficient algorithms. The standard approach

consists in deriving an optical flow equation [6] which usu-

ally amounts to approximating I1(r−u(r)) using a first order

Taylor expansion; i.e. for small values of u(r) and assuming

that the image is at least twice boundedly differentiable:

I1(r− u(r)) = I1(r)− u(r)T∇I1(r) + O
(
‖u(r)‖2

)

 I2(r) ≈ I1(r)− u(r)T∇I1(r)

Here and throughout this paper, the notation f(x) = O(g(x))
means that there exists a constant (independent of x) such that

|f(x)| ≤ const× |g(x)|.

Hence, a first order approximation results in an error that is

quadratic in u(r). Although it is possible to use higher or-

der Taylor approximations [24], the attempts in this direction

have not been conclusive so far.
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Fig. 1. Synthetic experiment warping image I1 to image I2 using a slowly varying displacement field of maximal amplitude

15 pixels. The shown LAP result [19] achieves a median accuracy of 0.010 pixels (mean: 0.102 pixels) in 6 seconds. For

comparison, the improved implementation of Horn-Schunck algorithm [18] achieves a median accuracy of 0.604 pixels (mean:

0.868 pixels) in 47 seconds; LDOF [22] achieves a median accuracy of 0.701 pixels (mean: 1.310 pixels) in 30 seconds;

and MPOF [23] achieves a median accuracy of 0.623 pixels (mean: 0.964 pixels) in 279 seconds. To facilitate the visual

comparisons, we have used a color code to indicate directions (top-right color wheel) and amplitudes, redundantly with the

arrows.

Using Fourier variables (Î1(ω) denoting the Fourier

transform of I1(r)), I1(r− u(r)) can be expressed as

I1(r− u(r)) =
1

4π2

∫

Î1(ω)e−ju(r)T
ωejr

T
ω dω (1)

and the Taylor approximation can be seen to derive from the

first order Taylor development of the exponential

e−ju(r)T
ω = 1− ju(r)T

ω+O
(
|u(r)T

ω|2
)

A recent approach to optical flow estimation devel-

oped by us [19], the local all-pass algorithm, uses a ra-

tional approximation (not a polynomial approximation) of

the exponential—a Padé approximation. This new algorithm

achieves a high accuracy and spatial consistency which makes

it outperform the state-of-the-art optical flow algorithms in

synthetic experiments. In real-life experiments, the algorithm

is still very competitive, although not the best—at least, on

some experiments. In addition this algorithm is quite fast (a

few seconds for standard 512× 512 images).

3. LOCAL ALL-PASS ALGORITHM

The LAP algorithm departs from the observation that, when

u(r) is constant across the image, I1(r − u) is exactly the

result of the convolution of an all-pass filter, δ(r − u), and

I1(r). Hence, the idea is to approximate this ideal filter using

an all-pass filter, h(r). It turns out that all-pass filters can

always be expressed in the Fourier domain as the ratio

ĥ(ω) =
p̂(ω)

p̂(−ω)
(2)

where p(r) is an arbitrary real filter (with a Fourier transform).

However, instead of looking for the ideal all-pass filter, the

idea developed in the LAP is to approximate the filter p(r)
onto a basis of few filters. Then slowly varying flows u(r)
can be estimated by approximating the all-pass filter in local

windows. The working principle of the LAP algorithm is that

the all-pass filtering relation between the two images can be

expressed linearly as a function of p(r):

I2(r) = h(r) ∗ I1(r) ⇔ p(−r) ∗ I2(r) = p(r) ∗ I1(r).

Then, a simple mean square minimization (fast, non-iterative)

provides the parameters representing p(r), from which, a non-

linear accurate formula provides an estimate of the flow u(r).

Now, the question we want to answer is: if we are able to

choose the best all-pass filter h(r) in this constrained frame-

work, what is the order of the approximation of I1(r − u(r))
by h(r) ∗ I1(r)?

4. PADÉ APPROXIMATION OF THE COMPLEX

EXPONENTIAL

To find the approximation order of the LAP algorithm, it is

useful to consider Padé approximants of the complex expo-

nential function with equal numerator and denominator de-

grees [25]. These approximants can be obtained from the con-

tinued fraction of ex [26, p. 70], but we will follow a different

approach.

Let us define the sequence of complex functions, εn(x),



defined through the recursion






ε0(x) = ejx − 1,

εn(x) = j

∫ x

0

εn−1(ξ)(e
j(x−ξ) − 1) dξ, for n ≥ 1.

(3)

Proposition 1 The functions εn(x) satisfy the following

properties

i. Sign change: εn(x) = −εn(−x)ejx;

ii. Complex conjugation: εn(−x)∗ = εn(x);

iii. Polynomial order: |εn(x)| ≤ 2−n|x|2n+1.

iv. Taylor: εn(x) ∼ j(−1)n x2n+1

(2n+1)! as x → 0

Property iii also implies that εn(x) is O
(
x2n+1

)
.

Proof — Properties i and ii: it is easy to show (using a

change of variables ξ → −ξ in the integral) that εn(−x)ejx

and εn(−x)∗ satisfy the same recursion equation as εn(x).
Hence, since ε0(−x)ejx = −ε0(x) and ε0(−x)∗ = ε0(x),
we infer by induction on n that i and ii are true for all integer

n ≥ 0.

Property iii: Thanks to the symmetry ii, we can restrict

the proof to x ≥ 0. Using the recursion equation (3), we have

the following inequality

|εn(x)| ≤ max
0≤ξ≤x

|εn−1(ξ)|

∫ x

0

∣
∣ej(x−ξ) − 1

∣
∣

︸ ︷︷ ︸

≤x−ξ

dξ

≤
x2

2
max
0≤ξ≤x

|εn−1(ξ)|

Since |ε0(x)| ≤ x, we infer that |εn(x)| ≤ 2−nx2n+1 by

induction on n.

Property iv: by Taylor, we have ejx − 1 ∼ jx as x → 0.

The recursion is verified by substitution of εn−1(x) ∼
an−1x

2n−1 into (3) and using the identity

anx
2n+1= −

∫ x

0

an−1ξ
2n−1(x− ξ) dξ =

−an−1x
2n+1

2n(2n+ 1)
.

Lemma 1 There exists a sequence, Pn(x), of real polynomi-

als of degree n such that

εn(x) = Pn(−jx)ejx − Pn(jx). (4)

Proof — We will prove by induction on n that εn(x) can be

expressed as an(x)e
jx + bn(x), where an(x) and bn(x) are

polynomials of degree n. This property is satisfied for n = 0
with a0(x) = 1 and b0(x) = −1. So, let us assume that it is

satisfied for some integer n ≥ 0. We will prove that it will be

satisfied for n+ 1 as well.

By using (3) we find that

εn+1(x) = j

∫ x

0

εn(ξ)(e
j(x−ξ) − 1) dξ

= −

∫ x

0

En(ξ)e
j(x−ξ) dξ (by parts)

= −Fn(x)e
jx

where En(x) is the primitive of εn(x) that vanishes at 0, and

where Fn(x) is the primitive of En(x)e
−jx that vanishes at 0.

So, if we assume that εn(x) = an(x)e
jx + bn(x) where

an(x) and bn(x) are polynomials of degree n, then its prim-

itive is of the form En(x) = αn(x)e
jx + βn+1(x), where

αn(x) is a polynomial of degree n and βn+1(x) a poly-

nomial of degree n + 1. Then, Fn(x) is the primitive of

αn(x) + βn+1(x)e
−jx that vanishes at 0. This function is

of the form an+1(x) + bn+1(x)e
−jx where an+1(x) and

bn+1(x) are polynomials of degree n + 1. This shows that

εn+1 is of the form an+1(x)e
jx + bn+1(x).

Then, thanks to the symmetries stated in Proposition 1, we

obtain bn(x) = −an(−x) (from property i) and that an(x) is

a real polynomial of the variable jx (from property ii); hence,

we can choose to define Pn(−jx) = an(x).

Note: the polynomial sequence Pn(x) can be shown to sat-

isfy the recursion ODE: −P ′′
n + P ′

n = Pn−1. It is the only

polynomial solution to this equation that satisfies the initial

condition Pn(0) = 2P ′
n(0) (for n ≥ 1). For instance, we

have
P1(x) = 2 + x,

P2(x) = 6 + 3x+
x2

2
,

P3(x) = 20 + 10x+ 2x2 +
x3

6
, etc.

As can be observed, the coefficients of these polynomials are

strictly positive, a property that can be proven by induction.

Proposition 2 The polynomials Pn(x) defined in Lemma 1

do not have pure imaginary roots; or, equivalently, if we de-

fine γn = infx∈R |Pn(jx)|, then

γn > 0, for all positive integer n.

Proof — Let us show that, if for some n, there exists a real

x0 such that Pn(jx0) = 0 then we reach a contradiction. We

can assume that x0 6= 0 because the coefficients of Pn(x) are

strictly positive (cf. earlier remark).

First, since Pn(x) is a real polynomial and x0 6= 0, both

jx0 and −jx0 are roots of Pn(x), which means that Pn(x)
can be factorized as (x2+x2

0)P
1
n−2(x), where P 1

n−2 is a poly-

nomial of degree n− 2.

Then, from Proposition 1 (Property iii applied to εn(x)
of (4)), we know that Pn(−jx)ejx − Pn(jx) = O(x2n+1)
which implies that P 1

n−2(−jx)ejx−P 1
n−2(jx) = O(x2n+1).

This is actually impossible, because expressions of the form

ε(x) = P (x)ejx +Q(x) (5)

where P (x) and Q(x) are arbitrary (complex or real) polyno-

mials of degree m ∈ N cannot be O(x2m+5). To see this, let

us perform the following differential operator on the function

ε(x) which we assume to be O(x2m+5): ε′′(x) − jε′(x) =

ejx
{
e−jxε′(x)

}′
. Expressing ε(x) according to (5) we find



that

ejx
{
e−jxε′(x)

}′

︸ ︷︷ ︸

O(x2m+3)

= (P ′′(x)+jP ′(x))
︸ ︷︷ ︸

polynomials of degree m− 1

ejx+Q′′(x)−jQ′(x)
︸ ︷︷ ︸

.

The rhs is of the form (5) with m changed into m − 1 and is

now O
(
x2(m−1)+5

)
, so that we can repeat the same differen-

tial operator until we obtain polynomials P (x) and Q(x) of

degree 0; i.e., constants. Hence, we reach a point where we

find that there exist constants p and q such that pejx + q =
O
(
x5

)
which is obviously impossible, since the best order

we can get for an expression of the form pejx + q is O(x)—
reached when p = −q. Hence, an expression of the form (5)

with polynomialsP (x) and Q(x) of degreem = n−2 cannot

be O
(
x2n+1

)
.

This contradiction shows that our hypothesis on the exis-

tence of pure imaginary roots of Pn(x) was wrong.

Theorem 1 A Padé approximation of order 2n of the com-

plex exponential function is given by the rational fraction

Pn(jx)/Pn(−jx) and we have that

∣
∣
∣ejx −

Pn(jx)

Pn(−jx)

∣
∣
∣ ≤

|x|2n+1

2nγn
.

This shows that this rational approximation of ejx is O
(
x2n+1

)
.

Proof — We use (4) to get

ejx −
Pn(jx)

Pn(−jx)
=

εn(x)

Pn(−jx)
.

Then, the theorem results from the inequalities stated in

Propositions 1 (Property iii) and 2.

Note: It is important to notice that, here, the polynomial

involved in the rational fraction is only of degree n, despite

the fact that the approximation order is twice larger. This is

in contrast with polynomial approximations like Taylor’s, in

which case the order of the approximation is the degree of the

approximating polynomial.

5. LAP APPROXIMATION ORDER

We are interested in the order of the approximation of I1(r−
u(r)) by h(r) ∗ I1(r) when h(r) is an all-pass filter of the

form (2). More specifically, like in the LAP algorithm, we

assume that the filter p(r) involved in (2) is in the span of a

basis of derivatives (up to order n) of a Gaussian function

p(r) =

n∑

l=0

l∑

k=0

ak,l
∂l

∂xk∂yl−k

{

exp
(

−
x2 + y2

2σ2

)}

, (6)

where σ is a free positive parameter. The cardinality of this

basis is 1
2 (n + 1)(n + 2), and it is clear that the all-pass fil-

ter (2) specified by

p̂(ω) = Pn(−juT
ω)e−

1
2
σ2‖ω‖2

can be expressed on this basis. Typically, in the LAP algo-

rithm, the value chosen for n is either 1 (three basis filters,

comprised of up to the first order derivatives), or 2 (six basis

filters, comprised of up to the second order derivatives).

Now, we need to introduce a Fourier-based notion of reg-

ularity: a function f(r) over R2 is said to be m times L1-

Fourier differentiable iff both its Fourier transform f̂(ω) and

‖ω‖mf̂(ω) are absolutely integrable. This notion implies—

but is not equivalent—that the partial derivatives
∂kf(r)

∂xi∂yk−i for

0 ≤ i ≤ k ≤ m exist and are continuous. Then we have the

following theorem.

Theorem 2 Consider a location r0 and the local all-pass fil-

ter hr0(r) defined according to (2) with

p̂r0(ω) = Pn(−ju(r0)
T
ω)e−

1
2
σ2‖ω‖2

. (7)

Then, if I1(r) is (2n + 1)-times L1-Fourier differentiable

(slightly stronger than C2n+1(R2)), we have

I1(r− u(r0))− hr0(r) ∗ I1(r) = O
(
‖u(r0)‖

2n+1
)
;

i.e., this approximation is of order 2n.

Proof — We use the inverse Fourier transform formula (1) to

get I1(r− u(r0))− hr0(r) ∗ I1(r) =
1

4π2

∫

Î1(ω)
(
e−ju(r0)

T
ω − ĥr0(ω)

)
ejr

T
ω dω.

By Theorem 1, we know that

∣
∣e−ju(r0)

T
ω − ĥr0(ω)

∣
∣ ≤ const× |u(r0)

T
ω|2n+1

≤ const× ‖u(r0)‖
2n+1‖ω‖2n+1

where the constant is independent of ω. Hence we can easily

bound
∣
∣I1(r− u(r0))− hr0(r) ∗ I1(r)

∣
∣

≤ const× ‖u(r0)‖
2n+1

∫

‖ω‖2n+1|Î1(ω)| dω

≤ const′ × ‖u(r0)‖
2n+1

where the last inequality holds because our L1-Fourier differ-

entiability assumption on I1 is equivalent to finiteness of the

above integral.

6. DISCUSSION

In our current practice [19], LAP is used with n = 1 (only

first order derivatives involved, three basis filters) or n = 2
(only first and second order derivatives involved, six basis fil-

ters). Theorem 2 shows that under a regularity assumption on

the image, the LAP algorithm is of approximation order 2 or

of order 4. This is remarkable because standard optical flow

algorithms are based on a simple first-order approximation

of the effect of a displacement—the “optical flow equation”.

What we have shown in this paper is that, without increas-

ing the differentiation depth, i.e., computing only first order

derivatives, and assuming sufficient regularity of the image,

we can approximate the effect of a displacement more ac-

curately: the error is a cubic power of the amplitude of the

displacement, compared to a quadratic power for the optical

flow equation.
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