An Adaptive All-Pass Filter for Time-Varying Delay Estimation

Beth Jelfs, Shuai Sun, Kamran Ghorbani, and Christopher Gilliam

School of Engineering, RMIT University, Australia

13th May 2022

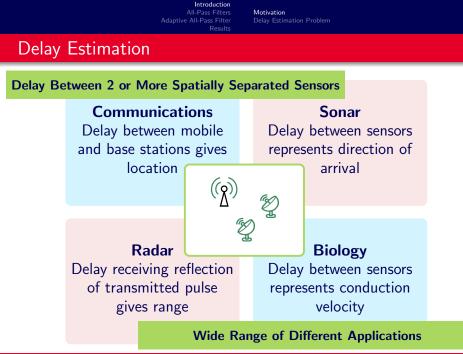
Outline

- 1 Introduction
 - Motivation
 - Delay Estimation Problem

2 Delay Estimation using All-Pass Filters

- All-Pass Filter Framework
- Linear Predictors
- **3** Adaptive All-Pass Filter
 - Normalise Adaptive All-Pass Filter
- 4 Results
 - Constant Delay
 - Tracking Performance

5 Conclusions



Adaptive All-Pass Delay Estimation

Motivation Delay Estimation Problem

Time Varying Delay Estimation

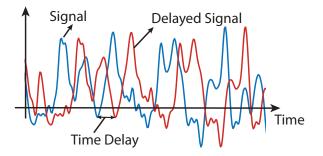
The Problem

At sample time n:

Sensor 1 receives the signal $\longrightarrow x(n)$

Sensor 2 receives a delayed version $\longrightarrow x(n - \tau(n))$

 \hookrightarrow Need to estimate the time varying delay $\tau(n)$



Motivation Delay Estimation Problem

Time Varying Delay Estimation

The Problem

At sample time n:

Sensor 1 receives the signal $\longrightarrow x(n)$

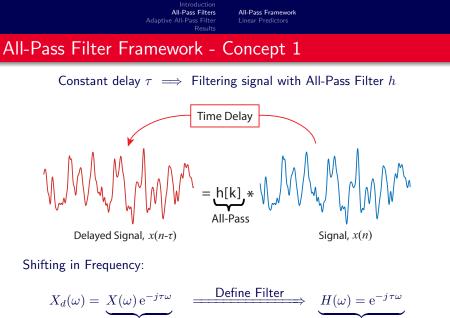
Sensor 2 receives a delayed version $\longrightarrow x(n-\tau(n))$

 \hookrightarrow Need to estimate the time varying delay $\tau(n)$

Our Approach:

Normalised Adaptive All-Pass (NAAP) Filter:

- $\, \hookrightarrow \,$ Capable of tracking varying time delays



= Filtering Operation

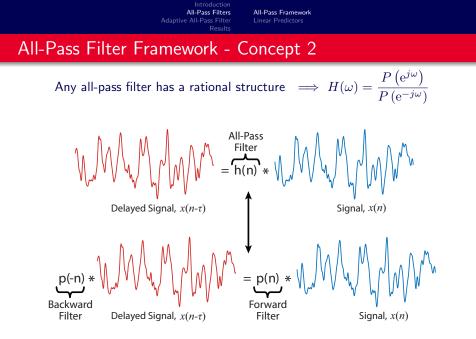
All-Pass

All-Pass Filters

All-Pass Framework

All-Pass Filter Framework - Concept 2

Any all-pass filter has a rational structure $\implies H(\omega) = \frac{P\left(e^{j\omega}\right)}{P\left(e^{-j\omega}\right)}$



All-Pass Filter Framework - Concept 3

Assuming p is an FIR filter of finite support $k \in [0, K]$:

$$p(k) = \begin{cases} a_k, & 0 \le k \le K \\ 0, & \text{otherwise,} \end{cases}$$

All-Pass Filter Framework - Concept 3

Assuming p is an FIR filter of finite support $k \in [0, K]$:

$$p(k) = \begin{cases} a_k, & 0 \le k \le K \\ 0, & \text{otherwise}, \end{cases}$$

Rewrite:

$$p(-n) * x(n-\tau) = p(n) * x(n)$$

as:

$$\sum_{k=0}^{K} a_k x(n+k-\tau) = \sum_{k=0}^{K} a_k x(n-k)$$

All-Pass Filter Framework - Concept 3

Assuming p is an FIR filter of finite support $k \in [0, K]$:

$$p(k) = \begin{cases} a_k, & 0 \le k \le K \\ 0, & \text{otherwise}, \end{cases}$$

Rewrite:

$$p(-n) * x(n-\tau) = p(n) * x(n)$$

as:

$$\sum_{k=0}^{K} a_k x(n+k-\tau) = \sum_{k=0}^{K} a_k x(n-k)$$

Delay estimation solution:

Φ

 \hookrightarrow Estimate coefficients a_k

$$ightarrow$$
 Determine delay: $\hat{ au} = 2 rac{\sum_k k a_k}{\sum_k a_k}$

All-Pass Framewor Linear Predictors

Proposed Linear Predictors

 \hookrightarrow At sample time *n*, sensor 1 receives x(n) and sensor 2 receives $x(n-\tau)$

All-Pass Framewor Linear Predictors

Proposed Linear Predictors

 \hookrightarrow At sample time *n*, sensor 1 receives x(n) and sensor 2 receives $x(n - \tau)$ Equivalent to setting $a_0 = 1$ and rewriting

$$\sum_{k=0}^{K} a_k x(n+k-\tau) = \sum_{k=0}^{K} a_k x(n-k)$$

as

$$x(n-\tau) - x(n) = \sum_{k=1}^{K} a_k x(n-k) - \sum_{k=1}^{K} a_k x(n+k-\tau)$$

All-Pass Framewor Linear Predictors

Proposed Linear Predictors

 \hookrightarrow At sample time *n*, sensor 1 receives x(n) and sensor 2 receives $x(n - \tau)$ Equivalent to setting $a_0 = 1$ and rewriting

$$\sum_{k=0}^{K} a_k x(n+k-\tau) = \sum_{k=0}^{K} a_k x(n-k)$$

as

$$x(n-\tau) - x(n) = \sum_{k=1}^{K} a_k x(n-k) - \sum_{k=1}^{K} a_k x(n+k-\tau)$$

Predicting current samples based on the other sensor samples:

$$\mathbf{x}(n) = \mathbf{x}_{+}^{T}(n-\tau)\mathbf{a}$$
$$\mathbf{x}(n-\tau) = \mathbf{x}_{-}^{T}(n)\mathbf{a}$$
$$\mathbf{a} = [a_{1}, \dots, a_{K}]^{T},$$
$$\mathbf{x}_{-}(n) = [x(n-1), \dots, x(n-K)]^{T}$$
$$\mathbf{x}_{+}(n-\tau) = [x(n+1-\tau), \dots, x(n+K-\tau)]^{T}$$

NAAP

Deriving the Adaptive All-Pass Filter

Desired Filter Response

Using linear predictors:

$$d(n) = \mathbf{x}_{-}^{T}(n)\mathbf{a} + \eta_{1}(n) - \mathbf{x}_{+}^{T}(n-\tau)\mathbf{a} - \eta_{2}(n)$$

where $\eta_1(n)$ and $\eta_2(n)$ are zero mean i.i.d. noise sources with variance σ_{η}^2 .

 $\mathbf{a}\ \longrightarrow\ \mathsf{Optimum}\ \mathsf{filter}\ \mathsf{coefficients}$

NAAF

Deriving the Adaptive All-Pass Filter

Desired Filter Response

Using linear predictors:

$$d(n) = \mathbf{x}_{-}^{T}(n)\mathbf{a} + \eta_{1}(n) - \mathbf{x}_{+}^{T}(n-\tau)\mathbf{a} - \eta_{2}(n)$$

where $\eta_1(n)$ and $\eta_2(n)$ are zero mean i.i.d. noise sources with variance σ_{η}^2 .

 $\mathbf{a}\ \longrightarrow\ \mathsf{Optimum}\ \mathsf{filter}\ \mathsf{coefficients}$

Current Filter Output

$$y(n) = \left[\mathbf{x}_{-}^{T}(n) - \mathbf{x}_{+}^{T}(n-\tau)\right]\mathbf{w}(n)$$

where $\mathbf{w}(n) = \left[w_{1}, w_{2}, \dots, w_{K}\right]^{T}$.
 $\mathbf{w}(n) \longrightarrow$ Current estimate of a

NAAF

Deriving the Adaptive All-Pass Filter

Desired Filter Response

Using linear predictors:

$$d(n) = \mathbf{x}_{-}^{T}(n)\mathbf{a} + \eta_{1}(n) - \mathbf{x}_{+}^{T}(n-\tau)\mathbf{a} - \eta_{2}(n)$$

where $\eta_1(n)$ and $\eta_2(n)$ are zero mean i.i.d. noise sources with variance σ_{η}^2 .

 $\mathbf{a} \ \longrightarrow \ \mathsf{Optimum filter coefficients}$

Current Filter Output

$$y(n) = \left[\mathbf{x}_{-}^{T}(n) - \mathbf{x}_{+}^{T}(n-\tau)\right] \mathbf{w}(n)$$

where $\mathbf{w}(n) = \left[w_{1}, w_{2}, \dots, w_{K}\right]^{T}$.
 $\mathbf{w}(n) \longrightarrow$ Current estimate of a

Error Term

Desired response minus filter output:

$$e(n) = \left[\mathbf{x}_{-}^{T}(n) - \mathbf{x}_{+}^{T}(n-\tau)\right]\mathbf{a} - \left[\mathbf{x}_{-}^{T}(n) - \mathbf{x}_{+}^{T}(n-\tau)\right]\mathbf{w}(n) + \eta_{1}(n) - \eta_{2}(n)$$

NAAP

Updating Filter Coefficients

Update filter coefficients using steepest-decent:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \nabla \mathcal{J}(n) \big|_{w=w(n)}$$

where μ is the learning rate and $\nabla \mathcal{J}(n)$ is the gradient of the cost function:

$$\mathcal{J}(n) = |e(n)|^2$$
$$\nabla \mathcal{J}(n)|_{w=w(n)} = -2e(n) \Big[\mathbf{x}_{-}^T(n) - \mathbf{x}_{+}^T(n-\tau) \Big]$$

NAAP

Updating Filter Coefficients

Update filter coefficients using steepest-decent:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \mu \nabla \mathcal{J}(n) \big|_{w=w(n)}$$

where μ is the learning rate and $\nabla \mathcal{J}(n)$ is the gradient of the cost function:

$$\mathcal{J}(n) = |e(n)|^2$$
$$\nabla \mathcal{J}(n)|_{w=w(n)} = -2e(n) \Big[\mathbf{x}_{-}^T(n) - \mathbf{x}_{+}^T(n-\tau) \Big]$$

Our Adaptive All-Pass Filter

$$e(n) = \mathbf{r}^{T}(n)\mathbf{a} - \mathbf{r}^{T}(n)\mathbf{w}(n) + \eta(n)$$
$$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu e(n)\mathbf{r}^{T}(n)$$

where $\mathbf{r}(n) = \mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)$ and $\eta(n) = \eta_{1}(n) - \eta_{2}(n)$

NAAP

Normalised Adaptive All-Pass Filter

Our filter converges in the mean square error $if^{[1]}$:

$$0 < \mu < \frac{1}{3\mathrm{tr}[\mathbf{R}]}$$

where:

$$\operatorname{tr}[\mathbf{R}] = \left[\mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)\right] \left[\mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)\right]^{T}$$

[1] B. Farhang-Boroujeny, 'Adaptive Filters: Theory and Applications', Wiley, 2013.

NAAP

Normalised Adaptive All-Pass Filter

Our filter converges in the mean square error if^[1]:

$$0 < \mu < \frac{1}{3\mathrm{tr}[\mathbf{R}]}$$

where:

$$\operatorname{tr}[\mathbf{R}] = \left[\mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)\right] \left[\mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)\right]^{T}$$

Normalised Adaptive All-Pass (NAAP) Filter

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \frac{\rho}{\|\mathbf{x}_{-}(n) - \mathbf{x}_{+}(n-\tau)\|_{2}^{2} + \varepsilon} e(n)\mathbf{r}(n),$$

where $0 < \rho < 1/3$ and ε is a small positive regularisation constant.

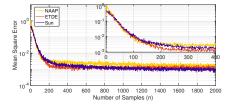
 \hookrightarrow Delay estimate obtained from $\mathbf{w}(n)$

[1] B. Farhang-Boroujeny, 'Adaptive Filters: Theory and Applications', Wiley, 2013.

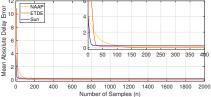
Constant Delay Tracking

Estimating a Constant Delay

Estimating a constant delay $\tau(n) = 5.85$ samples:



Evolution of the Mean Square Error



Evolution of the mean absolute delay error

 \rightarrow NAAP ($\rho = 0.08$), ETDE^[1] ($\mu = 0.04$) and Sun^[2] ($\mu = 0.02$)

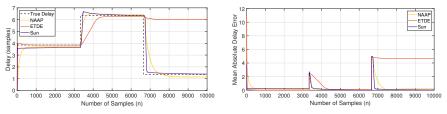
 \leftrightarrow Averages were obtained using 100 realisations of the synthetic signals

H. So, P. Ching, and Y. Chan, 'A new algorithm for explicit adaptation of time delay,' IEEE Trans. Signal Process., 1994.
 X. Sun and S. Douglas, 'Adaptive time delay estimation with allpass constraints,' in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999

Constant Delay Tracking

Tracking a Time Varying Delay

Estimating a piecewise constant delay in noise SNR = 20 dB:



Average evolution of the delay estimate

Evolution of the mean absolute delay error

 \hookrightarrow NAAP ($\rho = 0.01$), ETDE^[1] ($\mu = 0.02$) and Sun^[2] ($\mu = 0.008$)

 \leftrightarrow Averages were obtained using 100 realisations of the synthetic signals

H. So, P. Ching, and Y. Chan, 'A new algorithm for explicit adaptation of time delay,' IEEE Trans. Signal Process., 1994.
 X. Sun and S. Douglas, 'Adaptive time delay estimation with allpass constraints,' in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999

Tracking a Time Varying Delay

Average mean absolute delay errors for different SNR values

	Small Step Change				Lai	Large Step Change			
SNR (dB)	5	10	20	30	5	10	20	30	
NAAP ($\rho = 0.01$)	0.496	0.313	0.153	0.124	0.528	0.337	0.228	0.219	
ETDE ($\mu = 0.02$)	0.112	0.074	0.052	0.047	1.805	1.700	1.661	1.663	
Sun ($\mu=0.008$)	0.249	0.235	0.235	0.234	0.243	0.230	0.233	0.233	

'Small Step Change' \longrightarrow Changes of +0.75 and -1.50 samples 'Large Step Change' \longrightarrow Changes of +2.50 and -5.00 samples

 $\, \hookrightarrow \,$ NAAP is more robust to small changes in the learning rate

H. So, P. Ching, and Y. Chan, 'A new algorithm for explicit adaptation of time delay,' IEEE Trans. Signal Process., 1994.
 X. Sun and S. Douglas, 'Adaptive time delay estimation with allpass constraints,' in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999

Conclusions

All-pass filter framework for time delay estimation

- All-pass filtering equivalent to a time delay
- Time delay estimated using the filter coefficients
- Adaptive all-pass filter algorithm
 - Proposed novel linear predictors of current samples
 - Formulated a LMS style algorithm to estimate the filter coefficients
- Evaluated adaptive filter using synthetic data
 - Accurate and capable of tracking varying time delays
 - More versatile estimate than alternative methods

Thank you for listening