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Delay Estimation

Communications
Delay between mobile
and base stations gives

location

Radar
Delay receiving reflection

of transmitted pulse
gives range

Sonar
Delay between sensors
represents direction of

arrival

Biology
Delay between sensors
represents conduction

velocity
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Delay Between 2 or More Spatially Separated Sensors

Wide Range of Different Applications
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Time Varying Delay Estimation

The Problem

At sample time n:

Sensor 1 receives the signal −→ x(n)

Sensor 2 receives a delayed version −→ x(n− τ(n))

↬ Need to estimate the time varying delay τ(n)

Signal Delayed Signal

Time Delay

Time
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Motivation
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Time Varying Delay Estimation

The Problem

At sample time n:

Sensor 1 receives the signal −→ x(n)

Sensor 2 receives a delayed version −→ x(n− τ(n))

↬ Need to estimate the time varying delay τ(n)

Our Approach:

Normalised Adaptive All-Pass (NAAP) Filter:

↬ Versatile and accurate

↬ Capable of tracking varying time delays

↬ Real time operation
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All-Pass Framework
Linear Predictors

All-Pass Filter Framework - Concept 1

Constant delay τ =⇒ Filtering signal with All-Pass Filter h

Time Delay

] kh[=

All-Pass

*

Signal,Delayed Signal, x(n-τ) x(n)

Shifting in Frequency:

Xd(ω) = X(ω) e−jτω︸ ︷︷ ︸
= Filtering Operation

Define Filter
==============⇒ H(ω) = e−jτω︸ ︷︷ ︸

= All-Pass
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All-Pass Filter Framework - Concept 2

Any all-pass filter has a rational structure =⇒ H(ω) =
P
(
ejω

)
P (e−jω)

) nh(=

All-Pass

*

Signal,Delayed Signal, x(n-τ) x(n)

Filter

) np(=

Forward

*

Signal,Delayed Signal, x(n-τ) x(n)Filter

) -np(

Backward

*

Filter
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All-Pass Filter Framework - Concept 3

Assuming p is an FIR filter of finite support k ∈ [0,K]:

p(k) =

{
ak, 0 ≤ k ≤ K

0, otherwise,

Rewrite:

p(−n) ∗ x(n− τ) = p(n) ∗ x(n)
as:

K∑
k=0

akx(n+ k − τ) =

K∑
k=0

akx(n− k)

Delay estimation solution:

↬ Estimate coefficients ak

↬ Determine delay: τ̂ = 2

∑
k kak∑
k ak
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Proposed Linear Predictors

↬ At sample time n, sensor 1 receives x(n) and sensor 2 receives x(n− τ)

Equivalent to setting a0 = 1 and rewriting

K∑
k=0

akx(n+ k − τ) =

K∑
k=0

akx(n− k)

as

x(n− τ)− x(n) =
K∑

k=1

akx(n− k)−
K∑

k=1

akx(n+ k − τ)

Predicting current samples based on the other sensor samples:

x(n) = xT
+(n− τ)a

x(n− τ) = xT
−(n)a

a = [a1, . . . , aK ]T ,

x−(n) =
[
x(n− 1), . . . , x(n−K)

]T
x+(n−τ) =

[
x(n+1−τ), . . . , x(n+K−τ)

]T
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NAAP

Deriving the Adaptive All-Pass Filter

Desired Filter Response

Using linear predictors:

d(n) = xT
−(n)a+ η1(n)− xT

+(n− τ)a− η2(n)

where η1(n) and η2(n) are zero mean i.i.d. noise sources with variance σ2
η.

a −→ Optimum filter coefficients

Current Filter Output

y(n) =
[
xT
−(n)− xT

+(n− τ)
]
w(n)

where w(n) = [w1, w2, . . . , wK ]
T
.

w(n) −→ Current estimate of a

Error Term

Desired response minus filter output:

e(n) =
[
xT
−(n)− xT

+(n− τ)
]
a−

[
xT
−(n)− xT

+(n− τ)
]
w(n) + η1(n)− η2(n)
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Updating Filter Coefficients

Update filter coefficients using steepest-decent:

w(n+ 1) = w(n)− µ∇J (n)
∣∣
w=w(n)

where µ is the learning rate and ∇J (n) is the gradient of the cost function:

J (n) = |e(n)|2

∇J (n)
∣∣
w=w(n)

= −2e(n)
[
xT
−(n)− xT

+(n− τ)
]

Our Adaptive All-Pass Filter

e(n) = rT (n)a− rT (n)w(n) + η(n)

w(n+ 1) = w(n) + 2µe(n)rT (n)

where r(n) = x−(n)− x+(n− τ) and η(n) = η1(n)− η2(n)
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Normalised Adaptive All-Pass Filter

Our filter converges in the mean square error if[1]:

0 < µ <
1

3tr[R]

where:
tr[R] =

[
x−(n)− x+(n−τ)

][
x−(n)− x+(n−τ)

]T

Normalised Adaptive All-Pass (NAAP) Filter

w(n+ 1) = w(n) +
ρ

∥x−(n)− x+(n− τ)∥22 + ε
e(n)r(n),

where 0 < ρ < 1/3 and ε is a small positive regularisation constant.

↬ Delay estimate obtained from w(n)

[1] B. Farhang-Boroujeny, ’Adaptive Filters: Theory and Applications’, Wiley, 2013.
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Constant Delay
Tracking

Estimating a Constant Delay

Estimating a constant delay τ(n) = 5.85 samples:
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Evolution of the mean absolute delay error

↬ NAAP (ρ = 0.08), ETDE[1] (µ = 0.04) and Sun[2] (µ = 0.02)

↬ Averages were obtained using 100 realisations of the synthetic signals

[1] H. So, P. Ching, and Y. Chan, ’A new algorithm for explicit adaptation of time delay,’ IEEE Trans. Signal Process., 1994.
[2] X. Sun and S. Douglas, ’Adaptive time delay estimation with allpass constraints,’ in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999
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Tracking a Time Varying Delay

Estimating a piecewise constant delay in noise SNR= 20dB:
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↬ NAAP (ρ = 0.01), ETDE[1] (µ = 0.02) and Sun[2] (µ = 0.008)

↬ Averages were obtained using 100 realisations of the synthetic signals

Average mean absolute delay errors for different SNR values

Small Step Change Large Step Change

SNR (dB) 5 10 20 30 5 10 20 30

NAAP (ρ = 0.01) 0.496 0.313 0.153 0.124 0.528 0.337 0.228 0.219

ETDE (µ = 0.02) 0.112 0.074 0.052 0.047 1.805 1.700 1.661 1.663

Sun (µ = 0.008) 0.249 0.235 0.235 0.234 0.243 0.230 0.233 0.233

’Small Step Change’ −→ Changes of +0.75 and −1.50 samples

’Large Step Change’ −→ Changes of +2.50 and −5.00 samples

↬ NAAP is more robust to small changes in the learning rate

[1] H. So, P. Ching, and Y. Chan, ’A new algorithm for explicit adaptation of time delay,’ IEEE Trans. Signal Process., 1994.
[2] X. Sun and S. Douglas, ’Adaptive time delay estimation with allpass constraints,’ in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999
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[1] H. So, P. Ching, and Y. Chan, ’A new algorithm for explicit adaptation of time delay,’ IEEE Trans. Signal Process., 1994.
[2] X. Sun and S. Douglas, ’Adaptive time delay estimation with allpass constraints,’ in Proc. Asilomar Conf. Signals, Systems, and Computers, 1999
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Conclusions

All-pass filter framework for time delay estimation

All-pass filtering equivalent to a time delay
Time delay estimated using the filter coefficients

Adaptive all-pass filter algorithm

Proposed novel linear predictors of current samples
Formulated a LMS style algorithm to estimate the filter coefficients

Evaluated adaptive filter using synthetic data

Accurate and capable of tracking varying time delays
More versatile estimate than alternative methods
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The End

Thank you for listening
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