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ABSTRACT

Sonobuoy fields, comprising a network of transmitters and receivers,

are commonly deployed to find and track underwater targets. For

a given environment and sonobuoy field layout, the performance of

such a field depends on the scheduling, that is, deciding which source

should transmit, and which from a library of available waveforms

should be transmitted at any given time. In this paper, we propose a

novel scheduling framework based on multi-objective optimization.

Specifically, we pose the two tasks of the sonobuoy field—tracking

and searching—as separate, competing, objective functions. Using

this framework, we propose a characterization of scheduling based

on Pareto optimality. This characterization describes the trade-off

between the search-track objectives and is demonstrated on realistic

multistatic sonobuoy simulations.

Index Terms— Multi-static sonar; Sensor scheduling; Multi-

objective optimization; Target tracking; Pareto optimality

1. INTRODUCTION

A multistatic sonobuoy field comprises a network of transmitters

(sources) and receivers distributed across a large search area, used

to search for and track underwater targets. The network operates by

emitting an acoustic signal, or “ping”, from a transmitter sonobuoy

and receiving the signal, possibly reflected from a target, at nearby

receivers. In our context, the ping is either a frequency modulated

(FM) signal to measure target range and bearing, or a continuous

wave (CW) signal, to detect moving targets and to provide target

bearing and Doppler information as well as coarse range measure-

ments. By fusing the measurements, this network of sensors is able

to achieve high target detection performance in challenging under-

water environments where the signal-to-noise ratio of the returned

signal is typically low and clutter is significant. An example of a

sonobuoy field with 16 sources and 25 receivers is shown in Fig. 1.

The blue and green lines represent trajectories of targets that the field

must find and track. For this work, a key aspect, however, is to decide

which transmitter should ping in order to optimize the performance

of these search and track tasks.

The sequential order in which the sources in the network trans-

mit, and which waveform they use, is governed by a central sched-

uler (i.e. sensor manager). Krout et al [1] were the first to iden-

tify that the performance of a multistatic sonobuoy system could be

improved via intelligent scheduling. They developed a framework

for greedy (or myopic) scheduling with separate metrics for search

This research was supported in part by Defence Science and Technol-
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Systems”.
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Fig. 1. Illustration of a multistatic sonobuoy field and targets. The

crosses are transmitter sonobuoys and the circles are receivers. The

coloured lines indicate target trajectories and the squares indicate

their starting point.

and tracking. Since then significant work has been undertaken to

define new metrics and greedy algorithms for scheduling. For ex-

ample, search metrics based on the probability of undetected targets

in the field have been investigated using diffusion concepts in [1, 2],

Monto-Carlo techniques in [3, 4], and extended to incorporate tar-

get track information in [5]. In contrast, metrics based on weighting

the track information were proposed in [6], and optimizing the ex-

pected number of target detections in [7]. Long term (non-myopic)

scheduling has been investigated in [8–11].

In this paper, we propose a novel myopic multi-objective frame-

work for scheduling. Specifically, we treat the search and track

tasks as competing objectives and use multi-objective optimization

to decide the source and waveform at a given transmission time. In

contrast to single-objective optimization, multi-objective problems

in general have no single solution as their objectives may conflict

with one another [12]. For example, tracking could involve trans-

mitting in a area of the field that has already been searched. Thus,

different solutions are obtained depending on how the objectives are

prioritized. We formulate this prioritization using the weighted sum

method [13] — the objectives are combined as a convex sum, and

different solutions are obtained for different weightings. To assess

these solutions, we use Pareto optimality [14]: a point is Pareto op-

timal if there is no other point that improves at least one objective

function without detriment to another objective. Accordingly, we

present a characterization of scheduling in terms of a set of Pareto

optimal points, known as the Pareto front, that describe the trade-

off in the search-track objectives. This characterization is demon-

strated using realistic multistatic sonobuoy simulations. Note that,

in terms of tracking, multi-objective techniques have previously been

proposed for waveform design in radar [15] and sensor selection in



wireless networks [16].

The paper is organised as follows. In Section 2, we review

tracking in multistatic sonobuoy fields. In Section 3, we present the

framework of our scheduling algorithm, in particular integration of

the search and track tasks into a multi-objective problem. We then

analyse our scheduler using simulations in Section 4, followed by a

concluding section.

2. MULTISTATIC SONAR TRACKING

The key elements required to track a target in the sonobuoy field are

introduced here.

2.1. Modelling and Measurements

As illustrated in Fig. 1, the multistatic sonobuoy field comprises

a network of Ns sources and Nr receivers. The position of the jth

source in the field is defined as sj =
[

xj
s, y

j
s

]T
, where j = 1, . . . , Ns

and the position of the ith receiver is defined as ri =
[

xi
r, y

i
r

]T
,

where i = 1, . . . , Nr . We assume that the buoy positions are known

at all times, and ignore any ocean drift effects in this paper. An

underwater target within the field is described using the following

time-varying state: xk = [pT

k,v
T

k]
T
, where p = [xk, yk]

T
is the po-

sition of the target at time tk and v = [ẋk, ẏk]
T

is its corresponding

velocity. The motion of a target is approximated using the linear

constant velocity model:

xk = f(xk−1) =

([

1 T
0 1

]

⊗ I2

)

xk−1 (1)

where T = tk − tk−1 is the sampling in time, ⊗ is the Kronecker

product and I2 is the 2× 2 identity matrix. Note that, for this paper,

we assume that the targets remain at a constant depth.

Given the above geometric model, when a source emits a ping,

we obtain a set of measurements Y
(i)
k collected by a subset of re-

ceivers i ∈ Ik, known as the proximal (or contributing) receivers.

These measurements may relate to an actual target within the field

or a phantom target created by a false detection. Individually, a mea-

surement y ∈ Y
(i)
k comprises the kinematic measurement z and the

returned signal amplitude β such that y = [β, zT]
T
. The components

of the kinematic measurement z depend upon the type of waveform

emitted by the source. If an FM waveform has been emitted, then z

contains the bistatic range — the range from the source to the target

to the receiver — and the angle from the receiver. Whereas, if a CW

waveform is used, then, in addition to the bistatic range and the angle

from the receiver, the vector z also includes the bistatic range-rate.

Accordingly, for a waveform φ, we have:

z = h
(i)
j,φ(xk) +w

(i)
j,φ (2)

where h
(i)
j,FM(xk) =

[

h
(i)
j,ρ(xk), h

(i)
j,θ(xk)

]T

when φ = FM and

h
(i)
j,CW(xk) =

[

h
(i)
j,ρ(xk), h

(i)
j,θ(xk), h

(i)
j,d(xk)

]T

when φ = CW. The

individual components are defined as

h
(i)
j,ρ(xk) = |pk − ri|+ |pk − sj | , h

(i)
j,θ(xk) = tan-1

(

yk − yi
r

xk − xi
r

)

h
(i)
j,d(xk) = −v

T

[

pk − ri

|pk − ri|
+

pk − si

|pk − si|

]

.

Lastly, w
(i)
j,φ is zero-mean Gaussian noise with covariance R

(i)
j,φ.

2.2. Measurement Simulation Environment

To generate realistic multistatic sonobuoy measurements, we use

BRISE — the Bistatic Range Independent Signal Excess simulation

environment described in [17]. In brief, the environment works as

follows: the target detection process is based on calculating a re-

alization of the signal-to-noise-ratio (SNR) for each target at each

receiver. This SNR calculation employs precomputed signal excess

component data, stored in look-up tables, that depend on the config-

uration of the sources and receivers, the waveform emitted and the

target depth. Computation of the signal excess component data is

carried out offline using the Gaussian ray bundle eigenray propaga-

tion model [18]. Using this SNR value, BRISE then decides whether

a detection has occurred and, if so, it provides the measurement vec-

tor z corrupted by additive Gaussian measurement noise (the co-

variance R
(i)
j,φ of the noise is set in BRISE). False alarms are also

generated using a Poisson distribution to determine the number of

false detections and a uniform distribution from which to draw the

elements of the measurement vector z. For a complete review of the

BRISE simulation environment see [7, 19].

2.3. Tracking Algorithm

Many algorithms have been proposed for tracking multiple underwa-

ter targets using a multistatic sonar field, for example see [20,21]. In

this paper, however, we opt for the robust multi-target multi-sensor

Bernoulli tracker recently proposed in [19]. The tracker combines

the optimal Bayesian multi-sensor filter for a single target in clut-

ter, also known as the multi-sensor Bernoulli filter [22–24], with the

linear-multi-target paradigm [25]. This choice is based on two key

features of the tracker: 1) exploitation of the signal amplitude mea-

surement associated with a detected target yields robust track initi-

ation and false track discrimination; 2) capability to process mea-

surements with different modalities (i.e. measurements from CW

and FM waveforms). Note that we use the Gaussian mixture model

implementation of this tracker outlined in [26].

3. MULTI-OBJECTIVE SCHEDULING FRAMEWORK

We now detail our multi-objective framework for scheduling the

transmitters in the sonobuoy field. At each transmission time, the

scheduler must choose one action a from the following action space

A = S ×W (3)

where S = {j1, . . . , jNs
} is the set of all sources, W = {w1, . . . ,

wNw
} is the set of all waveforms and × represents the Cartesian

product of the two sets. In terms of waveforms, each transmitter

has Nw = 8 options: it can choose to emit either a FM or CW

waveform, at a frequency of either 1 kHz or 2 kHz frequency and

with a transmission duration of either 2 seconds or 8 seconds.

For each of these actions, we assign two rewards: i) a reward,

Rsearch, for searching the sonobuoy field to detect unknown targets

and ii) a reward, Rtrack, for continued, high-quality, tracking of

known targets. In this paper, we use the weighted sum method [27]

to combine the tracking and search objectives. Accordingly, the

scheduler picks a sequence of actions that maximises the following

convex sum at each transmission time

max
a

αRtrack(a) + (1− α)Rsearch(a), (4)

where α ∈ [0, 1] is the parameter that controls the priority the sched-

uler puts on searching versus tracking. The scheduler’s overall per-

formance in each task is thus dependent on the choice of α. We use



Pareto optimality to characterize how the performance in each task

varies with α. In the following we outline the two reward functions.

3.1. Tracking Rewards

Given the prior tracking information, our reward function should

measure the improvement in this information obtained from an ac-

tion a. A suitable approach, commonly used in sensor management

problems [28–30], is to approximate the Fisher information of the

future tracker states relating to the location variables. Accordingly,

our tracking reward takes into account the estimation accuracy as

well as the probability of detection for the current tracks as follows:

for an action a ∈ A, assuming L current, confirmed, tracks, the

tracking reward is:

Rtrack(a) =
L
∑

τ=1

ωτ
k tr



J
τ
p +

∑

i∈Ik(a)

P τ,i
d (a)Jτ,i

m (a)



 (5)

where tr represents the trace of a matrix.

The first term in (5) corresponds to the prior (or predicted) Fisher

information matrix for the track τ and is expressed as [31, Ch.4]

J
τ
p =

[

F
τ
k−1P

τ
k−1 [F

τ
k−1]

T
]−1

where Fτ
k−1 is the Jacobian of the function f(x), evaluated at xτ

k−1,

and Pτ
k−1 is the error covariance from the tracker. Assuming the

motion model in (1), Fτ
k−1 is fixed and identical for all tracks. Note

that we currently use only the position elements of the state vector

when constructing the Fisher information. The second term in (5)

corresponds to the information in the measurements obtained from

the set of proximal receivers Ik(a). This set is defined as the group

of receivers that are within a circle centred at the source and with a

radius twice that of the receiver-source separation. Individually, for

a receiver i, the measurement contribution to the information matrix

is [31, Ch.4]

J
τ,i
m (a) =

[

H
τ,i
k (a)

]T [

R
τ,i
k (a)

]

−1

H
τ,i
k (a)

where H
τ,i
k (a) is the Jacobian of the function hτ,i,a

k defined in (2).

This contribution is then weighted by P τ,i
d (a), the expected proba-

bility of detection of track τ at receiver i given an action a. Finally,

we use ωτ
k to weight the information associated with each track. This

weight is inversely proportional to the existence probability, given

by the tracker defined in Section 2.3, and is normalised such that
∑

τ ω
τ
k = 1. We only use confirmed tracks from the tracker, not

tentative ones, when computing the reward function in (5).

3.2. Search Rewards

We calculate the search reward based on the change in the proba-

bility of undetected targets existing within the sonobuoy field when

an action a is taken. Following [2], the presence of undetected tar-

gets are modelled using a drift/diffusion process on a discrete grid.

The discrete grid, known as a threat map, spans the search region

covered by the field and describes the probability of an undetected

target existing within a cell of the grid. These probabilities evolve

over time; they increase as undetected targets drift or diffuse into the

search region and decrease when a nearby transmitter emits a ping.

The assumed drift and diffusion target motion process is imple-

mented by filtering the threat map with a 2D filter G that describes

the probability of a target entering from adjacent cells. In [2], this

filter is obtained analytically by solving the Fokker-Planck equation.

However, in order to accommodate target motion models that cannot

be solved analytically, we use Monte-Carlo simulations to determine

a more general filter. This method works by generating a large num-

ber of targets in a cell, with uniform distribution of position, speed

and heading, then applying the target motion model to produce the

destination cell of the target. For example, the diffusion matrix over

a 1 minute interval for targets with uniformly distributed speed be-

tween 5 and 15 knots with a grid size of 1 km is

G =





0.0036 0.0582 0.0036
0.0582 0.7526 0.0582
0.0036 0.0582 0.0036



 . (6)

The reduction in the threat map probabilities caused by a ping

is calculated by applying a Bayesian update to each cell of the map;

for an action a ∈ A, the update is

PT,k(a) =
(1− Pd(a))PT,k−1

(1− Pd(a))PT,k−1 + (1− Pfa)(1− PT,k−1)
, (7)

where PT,k(a) is the updated probability that there is an undetected

target in the cell once action a has been taken, Pd(a) is the proba-

bility that a target in the cell is detected from action a and Pfa is the

false alarm probability. Note that the probability Pd(a) is obtained

by generating many possible targets in each cell and averaging the

probability of detection calculated by BRISE [17] over all targets.

Finally, the search reward for an action a is defined as

Rsearch(a) = λ
∑

x

∑

y

PT,k(x, y, a)− PT,k−1(x, y) (8)

This rewards transmissions that have high probability of detection

in areas of the sonobuoy field that have not yet been searched for

targets. Note that λ is a constant used to scale the search reward so

it is comparable in magnitude to the tracking reward. This scaling is

set to λ = 6 and equates to a rescaling of the value of α.

4. SIMULATION RESULTS

To analyse the performance of our scheduler, we vary α from 0 to 1

and perform 300 Monte-Carlo simulations, for each value of α, on

the scenario illustrated in Fig. 1. This scenario comprises a 4×4 grid

of transmitter sonobuoys, spaced 15 km apart, with a 5×5 grid of re-

ceiver sonobuoys, offset relative to the transmitters, and two targets

to find and track. The scenario lasts for 50 minutes with a transmis-

sion every minute. The blue target is present for the whole duration

and the green target appears after 10 minutes. The trajectories for

these targets are generated using a noisy version of the constant ve-

locity model defined in (1). The noise corruption is Gaussian in

nature and drawn from N (0,Q), where the variance Q is defined as

Q = ω

[

T 3/2 T 2/2
T 2/2 T

]

⊗ I2,

and ω is the intensity of the noise. Lastly, the depth of each target is

fixed to 55m and the threat map PT,0 is initialised with 0.0008 for

all cells. This scenario is designed to test the ability of the scheduler

to search for the green target while maintaining low track error for

the known (blue) target.

We use two metrics to measure the performance of the proposed

scheduler. The first measures the number of targets undetected by

the scheduler. This number is computed by first assigning the con-

firmed tracks, given by the tracker, to the targets in a way that min-

imises the total distance between tracks and targets. Then any targets

that are not assigned to tracks, or are assigned to tracks that are a dis-

tance greater than some constant away (200 meters in this paper), are
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Fig. 2. Performance of the Scheduler. Part (a) shows the mean number of undetected targets as the value of α varies from 0 to 1, part (b)

shows the mean track error for the same values of α and part (c) combines both errors to give a Pareto-esque frontier for the scheduler. The

red dashed line (and ‘+’) indicates the performance obtained using random scheduling. The error bars indicate the 95% confidence intervals.
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(d) α = 1.0

Fig. 3. Transmitter histograms for the scenario illustrated in Fig. 1. The histograms show the proportion of waveforms transmitted from each

source for four values of α over the 300 Monte Carlo runs. Note that each cell represents a transmitter in the field and the grid orientation

corresponds to field geometry shown in Fig. 1.

counted as undetected targets. The mean number of undetected tar-

gets during a simulation is used to evaluate the search performance

of the scheduler. The second metric evaluates the performance of

known target tracks. Using the same track assignment as the search

metric, the tracking error is the mean Euclidean distance between

confirmed tracks and targets, provided that this distance is less than

200m.

The performance results for the scheduler are shown in Fig. 2.

Part 2(a) shows the mean number of undetected targets for various α
and Part 2(b) shows the mean track error for the same values of α.

The error bars on each graph indicate the 95% confidence intervals.

As a comparison, the red dashed lines correspond to the mean perfor-

mance obtained when randomly scheduling the sonobuoy field. Note

that the values shown in the graphs are averaged over both the whole

scenario time and the number of Monte Carlo simulations. The two

metrics are then put on a single scatter plot in Part 2(c) to create a

Pareto-esque front that characterises the search-track trade-off of the

scheduler. The performance of the random scheduler is represented

as a red ‘+’.

As expected, Fig. 2 demonstrates clearly the trade-off between

search and tracking controlled by α; increasing α puts more em-

phasis on the tracking objective whereas decreasing α focuses the

scheduler on searching. Interestingly, the number of undetected tar-

gets increases slightly as α decreases from 0.2 to 0. This variabil-

ity probably arises because the scheduler loses track of known tar-

gets if they are not detected for some time. In terms of Pareto op-

timality, Fig. 2(c) shows that not all of the obtained solutions are

Pareto optimal. For example, using α = 0.25 results in smaller

tracking and search errors than all lower values of α. As a con-

sequence, the Pareto front constitutes the points corresponding to

α ∈ [0.25, 0.45] and α ∈ [0.6, 1.0]. Fig. 2(c) also demonstrates that

intelligent scheduling of the transmitters, regardless of the value of

α, significantly outperforms random scheduling.

To further analyse the behaviour of the scheduler, histograms

of the sources selected to transmit a waveform during the simula-

tions are shown in Fig. 3. The figure shows how the scheduling of

the sources changes as α increases from 0.0 to 1.0. Specifically,

when α = 0.0, in Fig. 3(a), the scheduler chooses sources around

the perimeter to fulfill the search task. However, as α increases, the

scheduler is more likely to choose sources that are closer to the tar-

gets. In particular, when α = 1.0, in Fig. 3(d), the scheduler focuses

on tracking the blue target thus choosing sources in the bottom right

corner of the field.

5. CONCLUSION

We presented a multi-objective framework for scheduling in mul-

tistatic sonobuoy fields. Our framework is based on treating search

and tracking tasks as competing objectives and using multi-objective

optimization to decide the optimum source-waveform action at a

given transmission time. These objectives were combined as a con-

vex sum, where the weight parameter controls the priority the sched-

uler places on search and tracking. By varying the value of this

weight, the trade-off between search and track in the scheduler can

be characterized in terms of a set of points on the Pareto front. Using

realistic multistatic sonobuoy simulations, we evaluated the perfor-

mance of our scheduler and estimated the Pareto front for a particular

scheduling scenario.
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