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Representing Sparsity with Finite Rate of Innovation

Sparse signals ⇐⇒ FRI signals
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(a) Piecewise Polynomials (b) Piecewise Sinusoids (c) Stream of Pulses

Characteristics:

Finite number of sparse, unpredictable, parameters
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(a) Piecewise Polynomials (b) Piecewise Sinusoids (c) Stream of Pulses

Characteristics:

Finite number of sparse, unpredictable, parameters
︸ ︷︷ ︸

Innovations of the Signals
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(a) Piecewise Polynomials (b) Piecewise Sinusoids (c) Stream of Pulses

Applications in Bio-medics:

Spike Estimation in Neurophysiological Data[1]

Fetal heart rate detection[2]

[1] J. Oñativia, R. Schultz & P.L. Dragotti, ‘A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium
imaging ’, J. Neural Engineering, 2013.

[2] A Nair & P. Marziliano, ‘Fetal heart rate detection using VPW-FRI ’, ICASSP, 2014
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(a) Piecewise Polynomials (b) Piecewise Sinusoids (c) Stream of Pulses

Two important questions...

# How to find the parameters?

# How many parameters to find? ⇐⇒ Rate of Innovation
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General FRI Framework

All FRI signals can be reduced to[1,2]....

Sum of Diracs
︸ ︷︷ ︸

K∑

k=1

xkδ(t− tk)

Linear
⇐=========⇒
Transform

Sum of Sinusoids
︸ ︷︷ ︸

K∑

k=1

xke
−jωtk

[1] P.L. Dragotti, M. Vetterli & T. Blu ‘Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix ’,
IEEE Trans. Signal Processing, 2007.

[2] J.A. Urigüen, T. Blu & P.L. Dragotti, ‘FRI sampling with arbitrary kernels’, IEEE Trans. Signal Processing, 2013.
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[1] P.L. Dragotti, M. Vetterli & T. Blu ‘Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix ’,
IEEE Trans. Signal Processing, 2007.

[2] J.A. Urigüen, T. Blu & P.L. Dragotti, ‘FRI sampling with arbitrary kernels’, IEEE Trans. Signal Processing, 2013.
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General FRI Framework

All FRI signals can be reduced to[1,2]....

Sum of Diracs
︸ ︷︷ ︸

K∑

k=1

xkδ(t− tk)

Linear
⇐=========⇒
Transform

Sum of Sinusoids
︸ ︷︷ ︸

K∑

k=1

xke
−jωtk

# Estimate FRI parameters:

{

xk Amplitudes

tk Positions

[1] P.L. Dragotti, M. Vetterli & T. Blu ‘Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix ’,
IEEE Trans. Signal Processing, 2007.

[2] J.A. Urigüen, T. Blu & P.L. Dragotti, ‘FRI sampling with arbitrary kernels’, IEEE Trans. Signal Processing, 2013.
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Reconstruction Procedure

Annihilation

Filter Method

Least Mean

Squares

tk

sm
sms xk

Non-linear
Recovery

Linear
Recovery

FRI Samples

Uniformly sample:

FRI samples: sm =

K∑

k=1

xke
−j2πmtk

︸ ︷︷ ︸

Sum of Sinusoids
N samples in total.
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Reconstruction Procedure

Annihilation

Filter Method

Least Mean

Squares

tk

sm
sms xk

Non-linear
Recovery

Linear
Recovery

FRI Samples

Step 1) Non-linear Recovery of tk

Determine filter H(z) =

K∑

k=0

hkz
−k such that hm ∗ sm = 0

︸ ︷︷ ︸

Annihilation

# Roots of filter H define the positions tk
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Reconstruction Procedure

Annihilation

Filter Method

Least Mean

Squares

tk

sm
sms xk

Non-linear
Recovery

Linear
Recovery

FRI Samples

In more detail:

hm ∗ sm = 0 ⇐⇒








sK sK−1 · · · s0
sK+1 sK · · · s1
...

...
. . .

...
sN−1 sN−2 · · · sN−K−1








︸ ︷︷ ︸

A








h0

h1

...
hK+1








︸ ︷︷ ︸

h

= 0

Solve Annihilation Equation: Ah = 0 −→ Requires N = 2K samples
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Reconstruction Procedure

Annihilation

Filter Method

Least Mean

Squares

tk

sm
sm xk

Non-linear
Recovery

Linear
Recovery

FRI Samples

Step 2) Linear Recovery of xk

Using tk =⇒ Determine xk via least mean squares
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Reconstruction Procedure

Annihilation

Filter Method

Least Mean

Squares

tk

sm
sm xk

Non-linear
Recovery

Linear
Recovery

FRI Samples

Estimating the rate of innovation:

1 Over-estimate rate =⇒ Set Kest = N/2

2 Build the annihilation matrix A

3 Rank of A = Actual K
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Model Mismatch

An imperfect world:

Sample Corruption: s̃m = sm + ǫm therefore Ãh 6= 0
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Model Mismatch

An imperfect world:

Sample Corruption: s̃m = sm + ǫm therefore Ãh 6= 0

Many methods to estimate sinusoids in noise:

For example: Total Least Squares,

Cadzow’s Method[1],

Matrix Pencil[2],

...

[1] J. Cadzow, ‘Signal Enhancement - A composite property mapping algorithm’, IEEE Acoust., Speech and Processing, 1988
[2] Y. Hua & T.K. Sarkar, ‘Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise’, IEEE Acoust.,

Speech and Processing, 1990
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Model-Fitting approach

Noiseless Conditions:

Inverse Fourier Transform of the sum of sinusoids sm
m

Expressed as a ratio of two Polynomials, P and H [1]

[1] C. Gilliam & T. Blu, ‘Fitting instead of Annihilation: Improved recovery of noisy FRI signals’, ICASSP, 2014
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Model-Fitting approach

Noiseless Conditions:

Inverse Fourier Transform of the sum of sinusoids sm
m

Expressed as a ratio of two Polynomials, P and H [1]

In other words:

sm
Inverse Fourier

⇐============⇒
Transform

yn =
P
(
ejωn

)

H(ejωn)

where

P
(
ejωn

)
is a polynomial of order K − 1

H
(
ejωn

)
is the annihilation filter, a polynomial of order K

ωn = 2πn/N

[1] C. Gilliam & T. Blu, ‘Fitting instead of Annihilation: Improved recovery of noisy FRI signals’, ICASSP, 2014

Christopher Gilliam and Thierry Blu Finding the Minimum Rate of Innovation 8 / 15



Motivation
FRI Signals
Finding RI

Results

Fitting
MSE Budget
RI Algorithm

Model-Fitting approach

Noiseless Conditions:

Inverse Fourier Transform of the sum of sinusoids sm
m

Expressed as a ratio of two Polynomials, P and H [1]

In other words:

sm
Inverse Fourier

⇐============⇒
Transform

yn =
P
(
ejωn

)

H(ejωn)

# Samples yn completely defined by the coefficients of the polynomials

[1] C. Gilliam & T. Blu, ‘Fitting instead of Annihilation: Improved recovery of noisy FRI signals’, ICASSP, 2014
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Model-Fitting approach

Noiseless Conditions:

Inverse Fourier Transform of the sum of sinusoids sm
m

Expressed as a ratio of two Polynomials, P and H [1]

In other words:

sm
Inverse Fourier

⇐============⇒
Transform

yn =
P
(
ejωn

)

H(ejωn)

# Samples yn completely defined by the coefficients of the polynomials
# Departs from the Annihilation Equation!!

[1] C. Gilliam & T. Blu, ‘Fitting instead of Annihilation: Improved recovery of noisy FRI signals’, ICASSP, 2014
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Model-Fitting approach

Noiseless Conditions:

Inverse Fourier Transform of the sum of sinusoids sm
m

Expressed as a ratio of two Polynomials, P and H [1]

In other words:

sm
Inverse Fourier

⇐============⇒
Transform

yn =
P
(
ejωn

)

H(ejωn)

Model Mismatch =⇒ Fit ratio model to the noisy samples ỹn

[1] C. Gilliam & T. Blu, ‘Fitting instead of Annihilation: Improved recovery of noisy FRI signals’, ICASSP, 2014
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Fitting using a MSE Budget
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Central Concept:

Fit model to the noisy data until the MSE budget has been satisfied

# ‖Data−Model‖22 ≤ MSE Budget
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Central Concept:

Fit model to the noisy data until the MSE budget has been satisfied

# ‖Data−Model‖22 ≤ MSE Budget

# Treat all models that satisfy the budget as equal
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Fitting using a MSE Budget
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Obtaining the MSE Budget:

# Noise Level of Acquisition Device

# Estimated from Noisy Signal

Christopher Gilliam and Thierry Blu Finding the Minimum Rate of Innovation 9 / 15



Motivation
FRI Signals
Finding RI

Results

Fitting
MSE Budget
RI Algorithm

Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

1 Update denominator Hi+1 =⇒ Solve linear system of equations
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Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

1 Update denominator Hi+1 =⇒ Solve linear system of equations

2 Update numerator Pi+1 =⇒ Obtain model update
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Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

1 Update denominator Hi+1 =⇒ Solve linear system of equations

2 Update numerator Pi+1 =⇒ Obtain model update

3 Check model against MSE budget
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Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

Based on MSE budget =⇒ Not based on convergence
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Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

Reaching X iterations...

# Repeat with another random initialisation of H0
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Solving the Model-Fitting

Iterative Strategy:

yn)N-1

∑
Hi+1(e

jωn) Pi(e
jωn)

Pi+1(e
jωn)

n=0
)Hi(e

jωn)

2

Hi+1

min
Hi+1

yn )

N-1

∑
Hi+1(e

jωn)
n=0

2

min
Pi+1

Hi

Yes, Stop

No, Repeat for

X iterations

MSER

MSER ≤ budget
MSE ?

~

~

Reaching X iterations...

# Repeat with another random initialisation of H0

Costly?....
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Solving the Model-Fitting

No =⇒ Very few initialisations are needed

Example of Robustness

FRI signal with K = 6 Diracs and N = 51 samples:

30 random initialisations =⇒ Algorithm failure rate = 0.015%
50 random initialisations =⇒ Algorithm failure rate = 0.0046%

# 15 random initialisations required to succeed in 99.9% cases
# 3 random initialisations required to succeed in 95% cases

*Results obtained using 500,000 realisations
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Solving the Model-Fitting

No =⇒ Very few initialisations are needed

Example of Robustness

FRI signal with K = 6 Diracs and N = 51 samples:

30 random initialisations =⇒ Algorithm failure rate = 0.015%
50 random initialisations =⇒ Algorithm failure rate = 0.0046%

# 15 random initialisations required to succeed in 99.9% cases
# 3 random initialisations required to succeed in 95% cases

*Results obtained using 500,000 realisations
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Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome
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Fitting
MSE Budget
RI Algorithm

Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

Model Fitting

Algorithm

K K

yn
~ Success

K

max min

i

K i

i = 1

MSER
MSE≤

Budget
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Fitting
MSE Budget
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Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

K K

K

max min

ii = 2

Model Fitting

Algorithm
yn
~ Failure

K i

>MSER
MSE

Budget
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Fitting
MSE Budget
RI Algorithm

Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

K K

K

max min

ii = 3

Model Fitting

Algorithm
yn
~

K i

Success

MSER
MSE≤

Budget
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Fitting
MSE Budget
RI Algorithm

Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

K K

K

max min

ii = 4

Model Fitting

Algorithm
yn
~

K i

Success

MSER
MSE≤

Budget
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Fitting
MSE Budget
RI Algorithm

Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

# Possible to estimate a lower rate of innovation than the original
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Fitting
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RI Algorithm

Finding the Rate of Innovation

Central Concept

Given a Rate of Innovation and MSE Budget:

Fitting algorithm either succeeds or fails =⇒ Binary outcome

Dichotomic Algorithm:

Binary search to determine the minimum K, i.e. rate of innovation

Concept of Parsimony:

The sparsest model is the most appropriate to represent the data
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Simulation Results

Set-up:

FRI signal with K = 12 Diracs and N = 97 samples

Number of random initialisations = 50

Compare against the Bayesian Information Criterion (BIC)[1]:

Calculate the BIC for every K

Choose K with the lowest BIC value

[1] P. Stoica & Y. Selen, ‘Model-order selection’, IEEE Signal Processing Mag., 2004.
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Simulation Results

Two sets of noisy conditions:
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Noisy FRI Samples
Noise Signal

(a) Input SNR = 30dB
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Noisy FRI Samples
Noise Signal

(b) Input SNR = 5dB
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Results of Dichotomic Algorithm:
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Reconstructed FRI Samples
Fitting Error

(a) Input SNR = 30dB
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Reconstructed FRI Samples
Fitting Error

(b) Input SNR = 5dB

Fit to MSE budget =⇒ Fitting Error
︸ ︷︷ ︸

Noisy Data - Model

∼ Noise Signal
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Results of Dichotomic Algorithm:
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Reconstructed FRI Samples
Fitting Error

(a) Input SNR = 30dB

# Output SNR = 34.2dB

−1 −0.5 0 0.5 1

−4

−2

0

2

4

6

Frequency, π/second
A

m
pl

itu
de

 (
R

ea
l p

ar
t)

 

 
Reconstructed FRI Samples
Fitting Error

(b) Input SNR = 5dB

# Output SNR = 7.3dB

Christopher Gilliam and Thierry Blu Finding the Minimum Rate of Innovation 13 / 15



Motivation
FRI Signals
Finding RI

Results

Simulations

Simulation Results

Sparse parameters:
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(a) Input SNR = 30dB

# BIC = 13 Diracs
# Dichotomic = 12 Diracs
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(b) Input SNR = 5dB

# BIC = 8 Diracs
# Dichotomic = 7 Diracs
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Conclusion

Introduced the concept of FRI recovery based on a MSE budget

Model representation of the FRI samples =⇒ A ratio of polynomials

Fit model to noisy data until MSE budget is satisfied

Fitting algorithm is fast, accurate and robust

Presented framework for finding rate of innovation

Outcome of model-fitting is binary =⇒ Succeeds or fails

Design binary search for the rate of innovation

Parsimony =⇒ Sparsest model is best

Results demonstrating the advantages of the algorithm

Obtained FRI signals that met the MSE budget

Sparse parameters consistent with original

Christopher Gilliam and Thierry Blu Finding the Minimum Rate of Innovation 14 / 15



Motivation
FRI Signals
Finding RI

Results

The End

Thank you for listening
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Possibility of Losing Innovation

Recovering 2 Diracs in heavy noise, SNR = 0dB:
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# Estimation using Maximum Likelihood over 500 realisations
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