Christopher **O**Ca D Gilliam and Pass Iters hierry O

ptica

Т

Estimation

Department of Electronic Engineering, The Chinese University

of

Hong Kong

email:

{cgilliam,

sequence

Pass

Filtering

Summary

present of demonstrate that this algorithm is fast, consistent, and that it outperforms three stateof show initial competitive results for real images of-the-art algorithms An applications images. important م novel algorithm to estimate the optical flow using local all-This motion is known as topic in image 0 00 computer vision, when estimating processing biology constant the **Optical Flow** S. the and medical imaging. estimation of and smoothly and is utilised in a range motion varying flows. from a -pass filters. In this work,

≪e

also

Shifting in frequency domain:

 $I_2(\omega_1,\omega_2) =$

 $I_1(\omega_1,\omega_2) e^{-ju_1\omega_1-\omega_1}$

 $ju_2\omega_2$

Filtering Operation

We

We

Under brightness constraint:

Constant optical flow

 \downarrow

Shifting is All-Pass

Filtering

Optical Flow **Estimation**

of pixel intensities Problem: Find a within an image velocity field u(x, y) =sequence [1], where $[u_1(x,y), u_2(x,y)]^{\mathrm{\scriptscriptstyle T}}$ based (x, y) is the pixel coordinates.

on the variation

2

All-Pass Filter:

 $H(\omega_1,\omega_2)$

 $= e^{-ju_1\omega_1 - ju_2\omega_2}$

as:

Standard Framework

Assume a pixel's intensity remains (a) Image 1, $I_1(x, y)$ Brightness Constraint: (b) Optical Flow, $\mathbf{u}(x, y)$ constants $I_2(x,y) =$ as it flows from one ima $I_1(x$ Non-Linear $u_1(x,y),y$ (c) Image 2, $I_2(x, y)$ $u_2($ (x,y))ge to another: (d) Flow Colour Code

Linearise tion that the displacement of the optical flow is constraint by performing first order Taylor approximation under the small [1,2]: assump-

 ∂I_1 ∂I_2

Optical Flow Equation: $+ u_{2}$ - ∂y || ()

 $I_2 - I_1 + u_1 {\partial x}$

1 Constraint for 2 Unknowns :

III-posed (Aperture Problem)

Overcoming the Aperture Problem:

Global Approach: Minimise

flow equation as

a data term and a regularisation constraint

on the flow

as

a prior

a global energy

function that

comprises

the optical

term [1].

Optical Flow

B. Horn and B. Schunck,
 B. Lucas and T. Kanade, '1981, vol. 2, pp. 674–679
 T. Brox and J. Malik, "La 3, pp. 500–513, 2011.

-679.

"An

iterative

image

registratio

tec

with

an

to stereo

in Proc.

Int.

Joint Conf. Artificial Intell.

., ∨a

Ca

ada

"Large displace

nt optical flow:

Des

cripto

matching in var

iational motion estimation,"

IEEE Trans. Pattern Anal. Mach.

Intell., vol.

33, no.

References

nck,

'Deter

ing optical

flow

Artificial Int

e#.

vol.

17, no.

1, pp.

185-

-203, 1981.

Unlike the others,

LAP

computation

Time (seconds) 6.23

- and pointwise multiplication Extract optical flow estimate from filters
 - Efficient implementation guisn convolutions

Under this assumption:

Assume

the

optical flow

<u>s</u>.

slowly

varying

 \downarrow

Treat

as

locally

constant

Relate local changes

between

two images

≤ia

۵

filter that

<u>s</u>.

All-Pass in nature

all-pass filte

Extract local estimate of optical flow from this

 \uparrow

No limit on the size of displacement of the flow

 $rac{l}{l} c_0 =$ ⊢ $k, l \in \mathcal{R}$ \Downarrow Solve linear system of equations

(2R +1square $\min_{\{c_n\}}$ window \mathcal{R} , $\sum |p_{\mathrm{app}}[-k,-l]*I_2[k,l]$ solve at every pixel: $- p_{\mathrm{app}}[k,l] *$

Instead of assuming small displacement and using the optical flow eq

uation:

Our

Approach

Local Approach: Constrain the optical flow to be constant over a

local region and

solve the optical flow equation within the region [2].

for Assume flow is constant within a window ${\mathcal R}$ and esti

mate

a local all-pass

filter.

Thus,

Local All-Pass Algorithm

Since $H_{\rm app} \approx {\rm e}^{-j u_1 \omega_1 - j u_2 \omega_2}$ \downarrow $u_{1,2} =$ \mathcal{O} .

4. Extracting the Displacement Vector

where $\sigma = (R+2)/4$ and R is the half-support of the

$p_2[k,l]=lp_0[k,l]$	$p_1[k,l]=kp_0[k,l]$	$p_0[k,l]=\mathrm{e}^{-rac{k^{\omega}+l^{\omega}}{2\sigma^2}}$
$p_5[k,l] = (k)$	$p_4[k,l]=kl$	$p_3[k,l] = (k)$

Opt for compact filter basis based on Gaussian filters: 12 \mathbb{N}

 $p_{\mathrm{app}}[k,l] =$ \sum

Approximate p using a linear combination of $\sum_{n=0} c_n p_n[k,l]$

 \triangleright Basis Representation a few, known, real filters:

ω Filter Approximation

 \bigcirc

 $I_{2}[k, l] = h[k, l] * I_{1}[k, l]$ p[-k, -

[]- \star $I_2[k,l]$ p[k, l]* $I_1[k, l]$

Linearise filtering performed by h:

ramework

The $(2\pi, 2\pi)$ -periodic frequency response of any digital all-pass filter can be expressed

Backward Filter Forward Filter

 $H(\omega_1,\omega_2) =$

 $\overline{P}(e^{-}$

 $-j\omega_1, \mathrm{e}^{-j\omega_2})$

 \wedge

 $P\left(\mathrm{e}^{j\omega_{1}},\mathrm{e}^{j\omega_{2}}
ight)$

 l^2 $2\sigma^2)p_0[k,l]$

 $l \, p_0[k,l] \ r^2 - l^2) \, p_0[k,l]$

filters.

 $(\mathrm{e}^{j\omega_1},\mathrm{e}^{j\omega_2})$

 $\partial \omega_{1,2}$

Ö

 $\frac{\partial \log \left(H_{\mathrm{app}}\right)}{\partial \left(H_{\mathrm{app}}\right)}$

 $\left| I_1[k,l] \right|^2$ \sum unknowns

with

II-Pass

[**4**] L. [**5**] S.

<u>ب</u>

Jia,

and Y. Matsus

о**М**,,

. Baker, o. 1, pp.

-31, 2011.

D. Sch

ein, J. P. Lev

S. Roth, M. Black,

nd R. Sz

ski,

Ň,

Ы

the

nd th

," Int.

J. Co

Vision,

fl

IEEE Tr

Patterr

An

Ma

Intell.

vol.

34

no

9

pp.

1744-

-1757,

2012.

gy for

cal flov

Int.

5.

0

vol. 92,

[6] D. S 106,

1, and M. Black, 115–137, 2014.

Multi Scale Refin ement

variations. Estimate R; large values of the flow RIN. allow the മ slow-to-fast estimation of large flow varying manner by whilst changing the filter small values allow faster parameter

Post-Processing:

- inpainting Remove erroneous flow estimates
- filtering Smooth flow estimate guisn mean

↔ Real Images \downarrow Preprocess image es using high-pass filter and median filtering at small ${\cal R}$

ス esults

Evaluation under two conditions:

synthetic optical flow. Conditions: Image Therefore, I_2 is ac I_2 quired independently of I_1 . Therefore, the images the images exactly satisfy brightness constraint. <u>s</u>. generated by directly warping image conditions). I_1 with മ

Real Conditions: Image Noiseless are unlikely to satisfy the brightness constraint exactly (i.e. noisy

Accuracy:

Measures: End-point Error (in pixels) $\| u_{\text{est}} \|_2^2$

Compa	rison of	the LAP	algorit	chm ag	ainst tl	nree st	ate-of-	the-art	optica	flow	algorith	nms
		Constant	Flows		Smo	othly Va	arying F	lows		Real I	Flows	
<u>Alacorithma</u>	D = 1	l pixel	D=1	5 pixel	D = 1	- pixel	D=1	5 pixel	Dimet	rodon	Rubber	Whale
Algorithms	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE	AAE	AEE
LAP	4×10^{-6}	1×10^{-7}	0.001	0.001	0.107	0.002	0.746	0.102	1.782	0.096	3.870	0.116
LDOF [3]	0.777	0.020	0.169	0.054	2.119	0.043	11.91	1.310	2.104	0.115	4.310	0.129
MPOF [4]	1.833	0.046	0.094	0 <u>.</u> 044	2.103	0 <u>.</u> 041	7.201	0.964	2.976	0.150	2.662	0.087
HS [1,6]	1.293	0.033	0.084	0.039	1.854	0.037	6.010	0.868	4.562	0.219	3.801	0.119
* AAE - Ave	erage Angu	ılar Error a	and AEE	E - Avera	age End-	-point E	rror					
** D is the	maximum	displacem	ent of tl	he optic:	al flow							

Estimating a smoothly varying optical flow with LAP algorithm (maximum displacement is 15 pixels)

(e) Image 1, I_1

Computation

Computation time for the five

-AP

LAP w.

(f) Ground Truth Flow, u

Time:

thr Ť, -theart 0 otic al flo

(h) LAP Flow Estimate, ue

ion times achieved using only a Matlab implementation

 optical flow algorithms (images are 388 by 584 pixels)

 w. Median Filters
 LDOF [3]
 MPOF [4]
 HS [1,6]

 7.76
 29.87
 279.00
 47.05