Fitting Instead of Annihilation: Improved Recovery of Noisy FRI Signals

Christopher Gilliam and Thierry Blu Department of Electronic Engineering The Chinese University of Hong Kong, Hong Kong

6th May 2014

Overview

- Signal Acquisition \implies Real World to Digital World
- Signals with Finite Rate of Innovation (FRI)
 - □ Sampling Framework
 - □ Reconstruction Procedure
 - Model Mismatch
- Fitting Approach to FRI Reconstruction
 - □ MSE criteria
 - □ FRI Samples as a Ratio of Polynomials
 - □ Algorithm
- Simulation Results
- Conclusions

Acquiring Signals

Digital World

Acquiring Signals \implies Transition from continuous to discrete domains

Sampling Theorems \implies Act as bridge between domains

Acquiring Signals

Digital World

Goal \implies Lossless transition between these domains

 \hookrightarrow Example: Sampling bandlimited signals

Acquiring Signals

Digital World

Recently:

 \hookrightarrow Perfect reconstruction for a class of non-bandlimited signals

Finite Rate of Innovation

Signals that possess a finite number of degrees of freedom per unit time

Finite Rate of Innovation

Signals that possess a finite number of degrees of freedom per unit time

For example:

Completely defined by 2 parameters \implies An amplitude a_k and position t_k

Finite Rate of Innovation

Signals that possess a finite number of degrees of freedom per unit time

For example:

Completely defined by 2 parameters \implies An amplitude a_k and position t_k

 \hookrightarrow For K Diracs \longrightarrow Rate of Innovation = $2K/\tau$

Beyond Diracs...

Other 1D FRI signals:

Applications in Bio-medics:

- Spike Estimation in Neurophysiological Data
- Compression of EEG and ECG signals

Beyond Diracs...

Higher Dimensional FRI signals:

(b) Bilevel Polygons

(c) Curves implicitly define by $\mathcal{C}: \mu(x,y) = 0$

Applications in image processing:

Image Super Resolution

FRI Sampling Framework

$$x(t) \longrightarrow \varphi\left(-\frac{t}{T}\right) - y(t) \xrightarrow{t}_{t=n} y_{n}$$

Periodic Stream of $K\ {\rm Diracs}$:

$$x(t) = \sum_{k=1}^{K} \sum_{l \in \mathbb{Z}} a_k \delta(t - t_k - l\tau),$$

 $\hookrightarrow \mathsf{Rate} \text{ of Innovation} = 2K/\tau$

 $a_k \longrightarrow$ Amplitudes $t_k \longrightarrow$ Positions $\tau \longrightarrow$ Period

FRI Sampling Framework

$$x(t) \longrightarrow \varphi\left(-\frac{t}{T}\right) - y(t) \xrightarrow{t}_{t=n} y_{n}$$

Filtered using Sampling Kernel:

$$\varphi\left(\frac{t}{T}\right) = \operatorname{sinc}\left(\frac{\pi t}{T}\right) = \operatorname{sinc}\left(\pi Bt\right)$$

where,

- $T \longrightarrow$ Sampling Period
- $B \longrightarrow$ Bandwidth (an odd number)

FRI Sampling Framework

$$x(t) \longrightarrow \varphi\left(-\frac{t}{T}\right) - y(t) \xrightarrow{t}_{t=n} y_{n}$$

Discrete Samples:

$$y_n = \int_{-\infty}^{\infty} x(t) \mathrm{sinc} \left(\pi B(nT - t) \right) \mathrm{d}t$$

Due to the periodic nature of x(t) ...

The Fourier Transform of the Samples:

$$\hat{y}_m = \sum_{n=0}^{N-1} y_n e^{-j2\pi mn/N} = \begin{cases} \sum_{k=1}^K a_k e^{-j2\pi mt_k} & \text{if } |m| \leq \lfloor B/2 \rfloor \\ 0 & \text{for other } m \in [-N/2, N/2] \,, \end{cases}$$

Note that $\tau = 1$.

The Fourier Transform of the Samples:

$$\hat{y}_m = \sum_{n=0}^{N-1} y_n e^{-j2\pi mn/N} = \begin{cases} \sum_{k=1}^K a_k e^{-j2\pi mt_k} & \text{if } |m| \leq \lfloor B/2 \rfloor \\ 0 & \text{for other } m \in [-N/2, N/2] \,, \end{cases}$$

Two step reconstruction:

1) Non-linear Recovery of $t_k \implies$ Annihilation Method

Determine filter
$$H(z) = \sum_{k=0}^{K} h_k z^{-k}$$
 such that $\underbrace{h_m * \hat{y}_m = 0}_{\text{Annihilation}}$

 \hookrightarrow Roots of filter H define Dirac positions

2) Linear Recovery of a_k

Using $t_k \implies$ Determine a_k via least mean squares

Annihilation Method in more detail:

$$h_{m} * \hat{y}_{m} = 0 \iff \underbrace{ \begin{bmatrix} \hat{y}_{K} & \hat{y}_{K-1} & \cdots & \hat{y}_{0} \\ \hat{y}_{K+1} & \hat{y}_{K} & \cdots & \hat{y}_{1} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{y}_{N-1} & \hat{y}_{N-2} & \cdots & \hat{y}_{N-K-1} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{0} \\ h_{1} \\ \vdots \\ h_{K+1} \end{bmatrix}}_{\mathbf{h}} = 0$$

Solve Annihilation Equation: $Ah = 0 \longrightarrow Requires N = 2K$ samples

Annihilation Method in more detail:

$$h_{m} * \hat{y}_{m} = 0 \iff \underbrace{ \begin{bmatrix} \hat{y}_{K} & \hat{y}_{K-1} & \cdots & \hat{y}_{0} \\ \hat{y}_{K+1} & \hat{y}_{K} & \cdots & \hat{y}_{1} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{y}_{N-1} & \hat{y}_{N-2} & \cdots & \hat{y}_{N-K-1} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{0} \\ h_{1} \\ \vdots \\ h_{K+1} \end{bmatrix} }_{\mathbf{h}} = 0$$

Solve Annihilation Equation: $Ah = 0 \longrightarrow Requires N = 2K$ samples

Model Mismatch

An imperfect world:

Sample Corruption: $\tilde{y}_n = y_n + \epsilon_n$ therefore $\tilde{\mathbf{A}}\mathbf{h} \neq 0$

 \hookrightarrow Need a robust way of estimating the annihilation filter

Model Mismatch

An imperfect world:

Sample Corruption: $\tilde{y}_n = y_n + \epsilon_n$ therefore $\tilde{\mathbf{A}}\mathbf{h} \neq 0$

Two approaches:

- i) Iterative Techniques \implies Cadzow's method^[1]
 - Observation: Matrix ${f A}$ is rank-K and Toeplitz when no noise
 - Enforce rank-K and Toeplitz structure
 - Constraint $\|\mathbf{h}\|^2 = 1$
- ii) Non-iterative techniques \implies Matrix Pencil Method^[2]
 - Subspace method that directly estimates t_k
 - Similarity to ESPRIT

[1] T. Blu, et al, 'Sparse sampling of signal innovations', IEEE Signal Processing Mag, 2008 [2] I. Maravic and M. Vetterli, 'Sampling and reconstruction of signals with finite rate of innovation in the presence of noise', IEEE Trans. Signal Processing, 2005

Model Mismatch

An imperfect world:

Sample Corruption: $\tilde{y}_n = y_n + \epsilon_n$ therefore $\tilde{\mathbf{A}}\mathbf{h} \neq 0$

Issues:

- Both approaches require large SVD
- Size of SVD scales with the number of samples N
- Difficult to handle large number of samples

Proposed Approach:

- \hookrightarrow Fast algorithm
- $\hookrightarrow \mathsf{Scales} \text{ with } K$
- \hookrightarrow Reliable at low SNR

Fitting using the Mean Squared Error

Known quantity:

Mean Squared Error (MSE) between the original and noisy samples \implies MSE (y_n, \tilde{y}_n)

Fitting using the Mean Squared Error

Known quantity:

Mean Squared Error (MSE) between the original and noisy samples \implies MSE (y_n, \tilde{y}_n)

Able to calculate:

MSE between the noisy and reconstructed samples \implies MSE (\tilde{y}_n, r_n)

Fitting using the Mean Squared Error

Proposed framework:

Determine r_n

such that

$$\hookrightarrow$$
 MSE $(\tilde{y}_n, r_n) \leq$ MSE (y_n, \tilde{y}_n)

 $\hookrightarrow r_n$ is a FRI signal

Polynomial Representation of FRI Samples

Noise-free FRI Samples:

$$y_n = \sum_{k=1}^{K} a_k \underbrace{\frac{\sin(\pi B(nT - t_k))}{B\sin(\pi (nT - t_k))}}_{\text{Dirichlet Kernel}}$$

Polynomial Representation of FRI Samples

Noise-free FRI Samples:

$$y_n = \sum_{k=1}^{K} a_k \underbrace{\frac{\sin(\pi B(nT - t_k))}{B\sin(\pi (nT - t_k))}}_{\text{Dirichlet Kernel}}$$

Using Euler's formulas \implies FRI samples represented as the ratio of two polynomials

$$y_{n} = z^{nM} \frac{P(z^{n})}{H(z^{n})} = z^{nM} \frac{\sum_{l=0}^{K-1} p_{l} z^{n}}{\sum_{k=0}^{K} h_{k} z^{n}}$$

where

- $\blacksquare P \text{ is a polynomial of order } K-1$
- \blacksquare H is the annihilation filter, a polynomial of order K

$$\square \quad z^n = e^{j2\pi n/N}$$

$$\blacksquare \quad M = N/2$$

Polynomial Representation of FRI Samples

Noise-free FRI Samples:

$$y_n = \sum_{k=1}^{K} a_k \underbrace{\frac{\sin(\pi B(nT - t_k))}{B\sin(\pi (nT - t_k))}}_{\text{Dirichlet Kernel}}$$

Using Euler's formulas \implies FRI samples represented as the ratio of two polynomials

$$y_{n} = z^{nM} \frac{P(z^{n})}{H(z^{n})} = z^{nM} \frac{\sum_{l=0}^{K-1} p_{l} z^{n}}{\sum_{k=0}^{K} h_{k} z^{n}}$$

Notice:

 \hookrightarrow FRI signal defined by the coefficients of the polynomials \hookrightarrow Order of Polynomials dependent on number of Diracs K \hookrightarrow Representation is in the time domain

Combining MSE criteria and polynomial representation:

$$\min_{H,P} \sum_{n=0}^{N-1} \left| \tilde{v}_n - \frac{P\left(e^{j2\pi n/N}\right)}{H\left(e^{j2\pi n/N}\right)} \right|^2$$

where H and P are defined by coefficients ${\bf h}$ and ${\bf p},$ and $\tilde{v}_n=\tilde{y}_n e^{-j2\pi nM/N}$

Combining MSE criteria and polynomial representation:

$$\min_{H,P} \sum_{n=0}^{N-1} \left| \tilde{y}_n - \frac{P\left(e^{j2\pi n/N}\right)}{H\left(e^{j2\pi n/N}\right)} \right|^2$$

where H and P are defined by coefficients ${\bf h}$ and ${\bf p},$ and $\tilde{v}_n=\tilde{y}_n e^{-j2\pi nM/N}$

Non-linear minimisation \implies Choose to solve linearly in an iterative manner

$$\min_{\mathbf{h}_{i},\mathbf{p}} \sum_{n=0}^{N-1} \left| \frac{H_{i} \left(e^{j2\pi n/N} \right) \tilde{v}_{n} - P \left(e^{j2\pi n/N} \right)}{H_{i-1} \left(e^{j2\pi n/N} \right)} \right|^{2}$$

where i is the iteration number

Note similar to the Steiglitz-McBride algorithm and Sanathanan-Koerner algorithm

Step 1) Initialisation: Calculate $\mathbf{h}_0 \implies$ Total least squares solution or set h(0) = 1Step 2) Solve for \mathbf{h}_i :

$$\min_{\mathbf{h}_{i}} \sum_{n=0}^{N-1} \left| \frac{H_{i}\left(e^{j2\pi n/N}\right) \tilde{v}_{n} - P\left(e^{j2\pi n/N}\right)}{H_{i-1}\left(e^{j2\pi n/N}\right)} \right|^{2}$$

under constraint on $\mathbf{h}_i \implies \|\mathbf{h}\|^2 = 1$ or h(0) = 1

Step 3) Solve for p:

$$\min_{\mathbf{p}} \sum_{n=0}^{N-1} \left| \tilde{v}_n - \frac{P\left(e^{j2\pi n/N}\right)}{H_i\left(e^{j2\pi n/N}\right)} \right|^2$$

Step 4) Assess MSE criteria \implies Stop if MSE is below known noise variance

Step 1) Initialisation: Calculate $\mathbf{h}_0 \implies$ Total least squares solution or set h(0) = 1Step 2) Solve for \mathbf{h}_i :

$$\min_{\mathbf{h}_{i}} \sum_{n=0}^{N-1} \left| \frac{H_{i}\left(e^{j2\pi n/N}\right) \tilde{v}_{n} - P\left(e^{j2\pi n/N}\right)}{H_{i-1}\left(e^{j2\pi n/N}\right)} \right|^{2}$$

under constraint on
$$\mathbf{h}_i \implies \|\mathbf{h}\|^2 = 1$$
 or $h(0) = 1$

For $\|\mathbf{h}\|^2 = 1$: \hookrightarrow SVD of size K + 1

For h(0) = 1:

 $\stackrel{ \ }{\to} {\rm Linear \ set \ of} \ K+1 \\ {\rm equations}$

Step 3) Solve for p:

$$\min_{\mathbf{p}} \sum_{n=0}^{N-1} \left| \tilde{v}_n - \frac{P\left(e^{j2\pi n/N}\right)}{H_i\left(e^{j2\pi n/N}\right)} \right|^2$$

Step 4) Assess MSE criteria \implies Stop if MSE is below known noise variance

Simulation Results

Assessing computation time:

Structure of Signal: K = 60 Diracs

Noise Characteristics: SNR = 5dB

Simulation Results

Assessing the MSE criteria: Success = MSE criteria achieved

Structure of Signal: K = 6 Diracs, N = 51 samples Noise Characteristics: 1000 realisations of noise each SNR

Simulation Results

How this relates to estimating the positions of the Diracs:

Structure of Signal: K = 6 Diracs, N = 51 samples Noise Characteristics: 1000 realisations of noise each SNR

Conclusions

- Presented a new framework for reconstructing noisy FRI signals
 - □ MSE between reconstruction and noisy samples less than Input MSE
- Demonstrated that FRI samples can be represented as ratio of polynomial
 - $\hfill\square$ Samples belong to a period stream of K Diracs
 - $\hfill\square$ Order of Polynomials depend on K
- Presented new algorithm for reconstructing noisy FRI signals
 - □ Fit polynomial representation to the noisy FRI samples
 - □ Iterative algorithm
 - □ Based on MSE criteria
- Empirical results showing advantages over existing algorithms
 - □ Reduced computation time
 - \Box Reliable results \Longrightarrow MSE criteria
 - □ Good position estimation

Thank you for listening