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� Signal Acquisition =⇒ Real World to Digital World

� Signals with Finite Rate of Innovation (FRI)

� Sampling Framework

� Reconstruction Procedure

� Model Mismatch

� Fitting Approach to FRI Reconstruction

� MSE criteria

� FRI Samples as a Ratio of Polynomials

� Algorithm

� Simulation Results

� Conclusions
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Acquiring Signals =⇒ Transition from continuous to discrete domains

Sampling Theorems =⇒ Act as bridge between domains
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Goal =⇒ Lossless transition between these domains

# Example: Sampling bandlimited signals
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Recently:

# Perfect reconstruction for a class of non-bandlimited signals
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Signals that possess a finite number of degrees of freedom per unit time
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For example:

Completely defined by 2 parameters =⇒ An amplitude ak and position tk
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Signals that possess a finite number of degrees of freedom per unit time

For example:

Completely defined by 2 parameters =⇒ An amplitude ak and position tk

# For K Diracs −→ Rate of Innovation = 2K/τ
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Other 1D FRI signals:
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(a) Piecewise Polynomials
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(b) Piecewise Sinusoids
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(c) Stream of Pulses

Applications in Bio-medics:

� Spike Estimation in Neurophysiological Data

� Compression of EEG and ECG signals
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Higher Dimensional FRI signals:

(a) 2D Diracs
(b) Bilevel Polygons (c) Curves implicitly define by

C : µ(x, y) = 0

Applications in image processing:

� Image Up-Sampling

� Image Super Resolution
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Periodic Stream of K Diracs:

x(t) =

K∑

k=1

∑

l∈Z

akδ(t− tk − lτ),

# Rate of Innovation = 2K/τ

ak −→ Amplitudes

tk −→ Positions

τ −→ Period
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FRI Sampling Framework

6 / 14

Filtered using Sampling Kernel:

ϕ

(
t

T

)

= sinc

(
πt

T

)

= sinc (πBt)

where,

T −→ Sampling Period

B −→ Bandwidth (an odd number)
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Discrete Samples:

yn =

∫
∞

−∞

x(t)sinc
(
πB(nT − t)

)
dt

Due to the periodic nature of x(t) ...

yn =

K∑

k=1

ak
sin(πB(nT − tk))

B sin(π(nT − tk))
︸ ︷︷ ︸

Dirichlet Kernel
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The Fourier Transform of the Samples:

ŷm =
N−1∑

n=0

yne
−j2πmn/N =







K∑

k=1

ake
−j2πmtk if |m| ≤ ⌊B/2⌋

0 for other m ∈ [−N/2, N/2] ,

Note that τ = 1.
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The Fourier Transform of the Samples:

ŷm =
N−1∑

n=0

yne
−j2πmn/N =







K∑

k=1

ake
−j2πmtk if |m| ≤ ⌊B/2⌋

0 for other m ∈ [−N/2, N/2] ,

Two step reconstruction:

1) Non-linear Recovery of tk =⇒ Annihilation Method

Determine filter H(z) =

K∑

k=0

hkz
−k

such that hm ∗ ŷm = 0
︸ ︷︷ ︸

Annihilation

# Roots of filter H define Dirac positions

2) Linear Recovery of ak

Using tk =⇒ Determine ak via least mean squares
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Annihilation Method in more detail:

hm ∗ ŷm = 0 ⇐⇒
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︸ ︷︷ ︸

h

= 0

Solve Annihilation Equation: Ah = 0 −→ Requires N = 2K samples
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An imperfect world:

Sample Corruption: ỹn = yn + ǫn therefore Ãh 6= 0

# Need a robust way of estimating the annihilation filter
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An imperfect world:

Sample Corruption: ỹn = yn + ǫn therefore Ãh 6= 0

Two approaches:

i) Iterative Techniques =⇒ Cadzow’s method[1]

� Observation: Matrix A is rank-K and Toeplitz when no noise

� Enforce rank-K and Toeplitz structure

� Constraint ‖h‖2 = 1

ii) Non-iterative techniques =⇒ Matrix Pencil Method[2]

� Subspace method that directly estimates tk

� Similarity to ESPRIT

[1] T. Blu, et al, ’Sparse sampling of signal innovations‘, IEEE Signal Processing Mag, 2008

[2] I. Maravic and M. Vetterli, ’Sampling and reconstruction of signals with finite rate of innovation in the presence of noise‘, IEEE

Trans. Signal Processing, 2005
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An imperfect world:

Sample Corruption: ỹn = yn + ǫn therefore Ãh 6= 0

Issues:

� Both approaches require large SVD

� Size of SVD scales with the number of samples N

� Difficult to handle large number of samples

Proposed Approach:

# Fast algorithm

# Scales with K

# Reliable at low SNR
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Known quantity:

Mean Squared Error (MSE) between the original and noisy samples =⇒ MSE (yn, ỹn)
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Known quantity:

Mean Squared Error (MSE) between the original and noisy samples =⇒ MSE (yn, ỹn)

Able to calculate:

MSE between the noisy and reconstructed samples =⇒ MSE (ỹn, rn)
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Proposed framework:

Determine rn

such that

# MSE (ỹn, rn) ≤ MSE (yn, ỹn)

# rn is a FRI signal
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Noise-free FRI Samples:

yn =
K∑

k=1

ak
sin(πB(nT − tk))

B sin(π(nT − tk))
︸ ︷︷ ︸

Dirichlet Kernel
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Noise-free FRI Samples:

yn =
K∑

k=1

ak
sin(πB(nT − tk))

B sin(π(nT − tk))
︸ ︷︷ ︸

Dirichlet Kernel

Using Euler’s formulas =⇒ FRI samples represented as the ratio of two polynomials

yn = znM
P (zn)

H (zn)
= znM

∑K−1
l=0 plz

n

∑K
k=0 hkz

n

where

� P is a polynomial of order K − 1

� H is the annihilation filter, a polynomial of order K

� zn = ej2πn/N

� M = N/2
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Noise-free FRI Samples:

yn =
K∑

k=1

ak
sin(πB(nT − tk))

B sin(π(nT − tk))
︸ ︷︷ ︸

Dirichlet Kernel

Using Euler’s formulas =⇒ FRI samples represented as the ratio of two polynomials

yn = znM
P (zn)

H (zn)
= znM

∑K−1
l=0 plz

n

∑K
k=0 hkz

n

Notice:

# FRI signal defined by the coefficients of the polynomials

# Order of Polynomials dependent on number of Diracs K

# Representation is in the time domain
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Combining MSE criteria and polynomial representation:

min
H,P

N−1∑

n=0

∣
∣
∣
∣
∣
ṽn −

P
(
ej2πn/N

)

H
(
ej2πn/N

)

∣
∣
∣
∣
∣

2

where H and P are defined by coefficients h and p, and ṽn = ỹne
−j2πnM/N



The Fitting Algorithm

11 / 14

Combining MSE criteria and polynomial representation:

min
H,P

N−1∑
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where H and P are defined by coefficients h and p, and ṽn = ỹne
−j2πnM/N

Non-linear minimisation =⇒ Choose to solve linearly in an iterative manner

min
hi,p

N−1∑

n=0

∣
∣
∣
∣
∣

Hi

(
ej2πn/N

)
ṽn − P

(
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∣
∣
∣
∣

2

where i is the iteration number

Note similar to the Steiglitz-McBride algorithm and Sanathanan-Koerner algorithm
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Step 1) Initialisation: Calculate h0 =⇒ Total least squares solution or set h(0) = 1

Step 2) Solve for hi:

min
hi

N−1∑

n=0

∣
∣
∣
∣
∣

Hi

(
ej2πn/N

)
ṽn − P

(
ej2πn/N

)

Hi−1

(
ej2πn/N

)

∣
∣
∣
∣
∣

2

under constraint on hi =⇒ ‖h‖2 = 1 or h(0) = 1

Step 3) Solve for p:

min
p

N−1∑

n=0

∣
∣
∣
∣
∣
ṽn −

P
(
ej2πn/N

)

Hi

(
ej2πn/N

)

∣
∣
∣
∣
∣

2

Step 4) Assess MSE criteria =⇒ Stop if MSE is below known noise variance
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Step 4) Assess MSE criteria =⇒ Stop if MSE is below known noise variance

For ‖h‖
2
= 1:

# SVD of size K + 1

For h(0) = 1:

# Linear set of K + 1
equations
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Assessing computation time:
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Matrix Pencil

Cadzow

Proposed Method

Structure of Signal: K = 60 Diracs

Noise Characteristics: SNR = 5dB
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Assessing the MSE criteria: Success = MSE criteria achieved
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Structure of Signal: K = 6 Diracs, N = 51 samples

Noise Characteristics: 1000 realisations of noise each SNR
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How this relates to estimating the positions of the Diracs:
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� Presented a new framework for reconstructing noisy FRI signals

� MSE between reconstruction and noisy samples less than Input MSE

� Demonstrated that FRI samples can be represented as ratio of polynomial

� Samples belong to a period stream of K Diracs

� Order of Polynomials depend on K

� Presented new algorithm for reconstructing noisy FRI signals

� Fit polynomial representation to the noisy FRI samples

� Iterative algorithm

� Based on MSE criteria

� Empirical results showing advantages over existing algorithms

� Reduced computation time

� Reliable results =⇒ MSE criteria

� Good position estimation
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Thank you for listening
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