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ABSTRACT opportunities. Accordingly, our focus is on optimising the search

Sonobuoy fields, comprising a network of sonar transmitters and
receivers, are used to search for and track underwater targets. Al-
though normally such fields are operated from a maritime patrol
aircraft, automated scheduling and processing creates opportunities
for employing them as autonomous sensor systems. The automated
search mechanism considered in this work is controlled by mod-
elling the presence of undetected threats in an Operational Area
(OA) using a spatial probability density function (PDF), known as
a threat map. The algorithm decides how to schedule waveform
transmissions, known as pings, to efficiently search and clear the
OA. A conventional approach is to update the threat map based on
just the characteristics of the sonobuoy field and switch to a separate
metric to track a target after track confirmation. In this study we
address the phase when there are potential contacts which cannot
yet be promoted to confirmed tracks. We develop a mechanism
for probing the associated areas of interest while still remaining in
the threat map driven search scheduling. To this end, we propose
reinitialising the threat map after each transmission using an aug-
mented PDF, where unconfirmed tracks are represented by weighted
Gaussians. Simulations show that this approach significantly im-
proves search performance, reducing the number of pings required
to confirm a track, distance from a confirmed track to the target and
the proportion of falsely confirmed tracks.

Index Terms— Multi-static sonar, Sensor scheduling, Au-
tonomous search.

1. INTRODUCTION

A sonobuoy is a compact deployable sonar system containing sonar
transmitters and/or receivers that can be used to search for and
track underwater targets. Multiple sonobuoys can be laid out in
a sonobuoy field and be used cooperatively, with an operator or
autonomous sensor management system deciding which sonobuoys
should ping at any given time. The goal of the sonobuoy field is to
search an Operational Area (OA) for an undetected threat; success is
either the clearance of the area or the detection and accurate tracking
of a target. In this paper, we focus on the search mode of operation.
Once the presence of a target has been confirmed then the field
switches to a tracking mode, where the focus is on high accuracy
location and tracking of the target. A challenging aspect, however, is
the confirmation of target; each transmission by the sonobuoy field
results in many detections that may or may not relate to a target. To
avoid false tracks, a track is confirmed once there is a high prob-
ability that the track is associated with a target. This confirmation
process requires multiple detections to be associated across multiple
pings, and hence coordination in the search mode to ensure detection

mode to reduce the number of pings (i.e. time) required to confirm a
track and clear an area.

A threat map is used to model the spatial PDF of an existing, but
undetected target [1-7]. This spatial PDF is updated as sonobuoys in
the field transmit waveforms and process returns, lowering the prob-
ability that an undetected target could exist in areas near the trans-
mitting sonobuoy according to the probability of detection. The PDF
is also updated at each time step to take into account possible kine-
matics of the target. The threat map can be used as a planning tool,
helping the operator to decide both where to place the sonobuoys
and when each sonobuoy should transmit a waveform in order to
effectively search an operational area. Section 2 details multiple ap-
proaches to calculating the threat map found in literature.

The existing methods of calculating a threat map are generally
focused on modelling detections and detection probability, but in
practice the decision to switch to tracking mode is based on more
than just a single detection. The sonar environment is usually noisy
and spurious detections are common. The system cannot switch to
tracking mode for every detection, because this would waste time
trying to track a target that does not exist while a true target contin-
ues to operate in another area. Detections are therefore processed
by a tracker, which requires multiple consistent detections to con-
firm the presence of a target. Detections initially create unconfirmed
tracks, with a low probability of being associated with a true target,
and are either promoted to confirmed tracks or discarded based on
subsequent detections.

In our previous work using threat maps to optimise sonobuoy
search [8], we observed a mismatch between detecting and con-
firming a track, which could lead to suboptimal performance. A
sonobuoy might ping and clear an area of the threat map, but if this
was not followed up with subsequent pings in the same area then the
tracker might discard the unconfirmed tracks by the time the area was
revisited. In this paper we explore the impact of including the uncon-
firmed tracks from the tracker into the threat map in order to make
more effective search decisions, such as repeatedly pinging in the
same area in order to confirm or discard unconfirmed tracks. This is
a novel approach that also has the advantage of being easy to retrofit
to existing systems, taking advantage of their existing tracking al-
gorithms. It moves application of the threat map from the planning
of the mission to its execution, where additional information from
detections can be used to schedule sonobuoy transmissions.

2. THREAT MAP

The threat map is a representation of the spatial PDF of an existing
but undetected target. There are two main approaches in the litera-
ture for modelling undetected targets.
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Fig. 1. The Incze & Dasinger [5, 6] approach to modelling the threat map.
A large number of virtual targets (red dots) are distributed over area A. The
particle weight (wyp) is calculated as the probability that the target is realised
as virtual target k (event T}, ) given that it hasn’t been detected yet (event By),
divided by the sum of probabilities for all K particles. The weight of a cell
(we) is the sum the weights of all the particles within it, and the PDF of the
target location is the cell weight divided by the cell area (dA). An area of
interest (Ag) is shown, and the probability that the target is in that area (Pp)
can be calculated by summing the weights of the particles it contains.

Krout et al. [1-4] model the probability of target presence us-
ing a regular grid of cells, and allow for target movement using a
drift and diffusion model on this grid. The calculated parameter
Py j),x is the probability of target presence in a cell (4, j) at step
k, which is incremented at each time step or whenever the sonar
transmission occurs. The amount by which a sonar transmission
changes P(; ;)1 depends on the probability of detection in the cell,
while value F(; ;) r+1 after the time step update is obtained using
Pys.q),x from adjacent cells (s, q) by application of a 3 x 3 spatial
Fokker-Planck (FP) filter which depends on the “drift” and “diffu-
sion” coefficients associated with the considered target motion sce-
nario. We used this technique in our previous work, which con-
sidered the tradeoff between tracking and search when scheduling
transmissions in sonobuoy fields [8]. One of the limitations of the
approach based on the FP filtering is that, for more complex scenar-
ios, the translation of the target motion assumptions into drift and
diffusion coefficients is not always straightforward. Using arbitrary
values for these coefficients may produce an invalid filter. Some
scenarios may require a higher-order finite-difference approximation
and a larger size (5 x 5) of the FP filter. Note also that the fact that the
probability of presence does not integrate to 1 implies that its trans-
formation into a probability density function requires some form of
rescaling. Such a rescaling procedure and an interpretation of its
result are yet to be discussed in the published literature.

Incze and Dasinger [5, 6] call their model of the threat map a
“Threat Density Probability Map”. They use a Monte Carlo ap-
proach in which the target can be realised as one of the virtual targets
from a large set of virtual targets initialised and propagated in accor-
dance with the scenario of interest. The probability of target pres-
ence in an area given that it remains undetected as the sonobuoys
transmit is calculated using Bayes’s Theorem and a model of detec-
tion probability, as well as the target motion assumptions. This prob-
ability is normalised to sum to 1 over all target locations considered,
modelling the assumption that a single target exists somewhere. Fig-
ure 1 details this approach.

The Incze and Dasinger method is computationally expensive
because of the large number of virtual targets. However, Simakov
and Fletcher [7] implement this model on the GPU, allowing for tens
of thousands of virtual targets to be used. We use this approach to
calculate the threat map in this paper, and Figure 2 shows an example
of how this threat map evolves as sonobuoys ping.

A limitation of these approaches is that they do not take into
account detection information available during operation. We now
propose a method of incorporating this information into the threat

Fig. 2. Example showing how the threat map evolves as sonobuoys ping over
four consecutive pings. The colour represents the probability density of target
presence, with darker areas indicating lower probability. The sixteen grey
circles show the sonobuoys, which are all both transmitters and receivers.
The pink square shows the operational area which is being searched. The
red square with a green outline shows the target location. The red star on a
sonobuoy indicates that it has just emitted a waveform, which clears a roughly
circular area around it by lowering the probability of target presence. The
bright yellow blobs show unconfirmed tracks which have been incorporated
into the threat map.

map in order to reduce the number of pings required to confirm a
target.

3. INCORPORATING UNCONFIRMED TRACKS INTO
THE THREAT MAP

To overcome the limitations discussed previously, we now present
our approach to incorporating unconfirmed target information into
the threat map. For each sonar transmission, a small number of
detections are received, which are used to update existing con-
firmed tracks or initiate a new unconfirmed track. The location
Xp = [mk,yk]T and covariance matrix C’;y of each unconfirmed
track (k = 1,..., K}), which are outputs from the tracker, were
used to form the associated 2D Gaussian corrections to the evolving
Threat Map PDF p(x, t)
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and Ef:to v = 1. After each sonar transmission we first apply
a standard threat map update [7], which accounts for ping-induced
reduction of weights of virtual targets. In the simulations discussed
in this paper, 7y, used in (1) had the following values: o fixed and
Y& = (1 —=70)/K: (k> 0).

Next we incorporate unconfirmed tracks into the resulting
p(x,t) by adding weighted Gaussian corrections. This also uses

G(x;Cyy) =



a reinitialisation procedure which produces a set of K|, equally-
weighted particles {x,(k), wp(k) = 1/K}} spread over the cells of
the threat map. Figure 3 illustrates calculation of the cell index for
particle k. Here U(0, 1) is the uniform distribution in the interval
(0,1). We use the inversion method [9, Ch. 3]. The probability
that a particle is placed into cell n is w.(n), where the cell weights
{wc(m)} are obtained by integrating the post-ping PDF p(x, ) in
the respective cells. Once the cell for particle k has been identified,
Xp(k) is obtained by drawing from a uniform distribution defined
in the cell. This process effectively imbues the threat map with a
memory of all the previous detection information.

The repeated reinitialisation can result in clumping of particles
into some cells at the expense of depopulation of the adjacent cells.
Replacing pseudo-random generation used for production of r, €
U(0,1) during calculation of the particle cell index with a quasi-
random approach (e.g. Sobol, or scrambled Sobol generators [10])
resolves this issue.
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Fig. 3. Reinitialisation procedure: calculation of cell-index of particle k.

4. SCHEDULING MULTISTATIC SONOBUOY FIELDS

The key elements required to schedule a sonobuoy field are intro-
duced here.

4.1. Sensor Scheduling Algorithm

Sensor scheduling in this sonobuoy scenario means choosing which
sonobuoy to emit a waveform from in each ping interval 7. In this
paper we consider three scheduling algorithms: random, raster and
lookahead scheduling. The random scheduler picks a uniformly ran-
dom sonobuoy to transmit in each interval. The raster scheduler uses
a predefined raster pattern of sonobuoys to ping from that loops until
the target is found. The lookahead scheduler is a myopic sched-
uler that picks the sonobuoy that minimises the probability of target
presence in the area of interest, Ao, after the next ping, as modelled
by the threat map. Note, as discussed in the introduction, we only
consider scheduling to optimise the search for an unknown target;
the tracking and localisation of a confirmed target requires different
optimisation criteria [8, 11].

We apply the lookahead scheduler to the threat map evolved in
two different modes: conventional, as described by Figure 1, and
our method of incorporating unconfirmed track information, as de-
scribed in Section 3. Figure 4 shows a diagram of the simulation
setup and summarises how the lookahead scheduler works when the
latter mode is employed.

4.2. Measurement Simulation

We use the BRISE (Bistatic Range Independent Signal Excess) [12]
simulation environment to simulate sonobuoy measurements. BRISE
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Fig. 4. Simulator setup, showing interaction between the threat map GPU
computation tool, the contact generator, and the tracker in the case when the
lookahead scheduler is applied to a threat map augmented by unconfirmed
tracks.

uses lookup tables containing signal excess data, precomputed us-
ing the Gaussian ray bundle eigenray propagation model [13], to
calculate a signal-to-noise ratio (SNR) for each target and produce
measurements of the bistatic range and bearing, along with false
alarms [14]. The simulations in this paper all use a linear frequency
modulation (LFM) waveform centred at 2 kHz with a transmission
duration of 2 seconds and bandwidth of 200 Hz.

4.3. Tracker

In order to provide unconfirmed tracks to combine with the threat
map, we use a multi-target tracking algorithm [14, 15] that has been
extensively evaluated for tracking targets in similar sonobuoy sce-
narios [8,11,16,17] and found to perform robustly. The tracker uses
the multi-sensor Bernoulli filter [18,19], the optimal Bayesian multi-
sensor filter for a single target, and applies the linear-multitarget
paradigm [20] to extend it to track multiple targets. In particular, we
use the Gaussian mixture model implementation of this algorithm.
The tracker estimates a probability of target existence for each track,
along with a track status that indicates if the track is confirmed (i.e.
high probability of being associated with a true target) or uncon-
firmed.

5. RESULTS

In order to evaluate the performance of the system shown in Figure 4
and demonstrate the advantage of using unconfirmed track informa-
tion in the threat map, we used simulations of the scenario shown in
Figure 5. This scenario has 16 sonobuoys, arranged in a 4x4 grid
and spaced 20 km apart. In each simulation, the target starts at a
random position uniformly distributed in the 5 km neighbourhood
of the boundary of the operational area and moves towards the cen-
tre of the field. The scenario is run until the tracker reports its first
confirmed track, at which point the field would switch modes from
search to tracking in a practical scenario. The performance metrics
gathered are the number of pings until the track is confirmed, the
proportion of falsely confirmed tracks, and the distance between the
target location and the confirmed track. A falsely confirmed track is
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Fig. 5. Sonobuoy scenario, with 16 sonobuoys (grey circles) laid out in
a grid spaced 20 km apart. The red dots show sample target trajectories,
starting in the neighbourhood of the boundary of the operational area and
moving towards the centre. The pink square shows Ag, the area of interest,
which is a square area from (—40, —40) km to (40, 40) km.

defined as a confirmed track position estimate that is more than 1 km
from the true target position, and these are excluded from the mean
distance calculation.

Simulations were performed for the four different scheduling
methods detailed in Section 4.1, which are labelled Raster (pre-
defined sweeping pattern), Random (uniform random selection of
sonobuoy), Lookahead (lookahead scheduling without incorporat-
ing unconfirmed tracks) and Unconfirmed (lookahead scheduling
incorporating unconfirmed tracks). 1,000 Monte-Carlo simulations
were performed for all methods and for various values of vo.

Figure 6 shows the results from these simulations. The three
methods that do not use unconfirmed track information all show sim-
ilar performance on the number of pings to confirm a track, taking
a mean of 24.9 to 26 pings to confirm a track. Incorporating uncon-
firmed track information into the threat map reduced this number
of pings significantly, down to 13.5 pings for o = 0.93. Impor-
tantly, the corresponding proportion of falsely confirmed tracks is
also lower for the Unconfirmed method. Thus, the improvement in
confirmation is due to the tracker confirming true tracks faster not
false tracks. The mean distance between the target and the con-
firmed track at confirmation time was also lower for the Uncon-
firmed method, indicating that this method also improves track error
at confirmation time. The performance of the Unconfirmed method
was fairly stable across a wide range of o and converges with the
performance of the Lookahead method as 7o approaches 1 as ex-
pected, because no unconfirmed track information is incorporated
when v = 1.

Figure 7 shows 2D histograms of the proportion of pings emitted
from each sonobuoy, with a layout matching Figure 2. Raster shows
the characteristic vertical scanning pattern, from the bottom left to
the top right. Random is uniformly distributed, as expected. Looka-
head shows unbalanced usage of the field, focusing on the edges and
corners once the centre of the field has been cleared because that
is where a target will likely enter from. By contrast, Unconfirmed
shows more balanced sonobuoy usage which is somewhere between
Lookahead and Random, with a focus on the edges of the field but
the unconfirmed tracks leading it to make greater usage of the other
sonobuoys.
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Fig. 6. Simulation results, showing the proportion of falsely confirmed
tracks, mean distance between the confirmed track and the true target and
the number of pings to confirm a target for the 4 methods. Performance is
shown for a range of g values, with Unconfirmed being the only method that
depends on this parameter. The error bars show plus or minus one standard
deviation.
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6. CONCLUSION

In this paper we have presented a novel approach to improving au-
tonomous search of an area of interest using a sonobuoy field. By in-
corporating unconfirmed track information from the tracker into the
threat map, we demonstrate a significant increase in performance,
reducing the number of transmissions required to confirm the pres-
ence of an underwater threat, such as a submarine or a sizeable UUV.



The confirmed tracks were also more accurate and there was a lower
proportion of falsely confirmed tracks. This suggests that utilising
the proposed technique in the search mode of multistatic systems
could be valuable in practice, and our approach can take advantage
of the existing tracking algorithms of such systems. Future work in-
cludes exploring alternative ways of combining unconfirmed tracks
with the threat map.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

7. REFERENCES

D. W. Krout, M. A. El-Sharkawi, W. L. Fox, and M. U. Hazen,
“Intelligent ping sequencing for multistatic sonar systems,” in
Proceedings of the 9th International Conference on Informa-
tion Fusion. IEEE, 2006, pp. 1-6.

D. W. Krout, W. L. Fox, and M. A. El-Sharkawi, “Probabil-
ity of target presence for multistatic sonar ping sequencing,”’
Oceanic Engineering, IEEE Journal of, vol. 34, no. 4, pp. 603—
609, 2009.

D. W. Krout, G. M. Anderson, E. Hanusa, and B. D. Jones,
“Threat modeling for sensor optimization,” in 2013 OCEANS-
San Diego. IEEE, 2013, pp. 1-4.

D. W. Krout and T. Powers, “Sensor management for multistat-
ics,” in 17th International Conference on Information Fusion
(FUSION). IEEE, 2014, pp. 1-6.

B. L. Incze and S. B. Dasinger, “Revisiting measures of effec-
tiveness in support of low-frequency, multistatic sonar search
in the littoral battlespaces,” Tech. Rep., Naval Undersea War-
fare Center, Newport RI, 2000.

B. L. Incze and S. B. Dasinger, “A bayesian method for man-
aging uncertainties relating to distributed multistatic sensor
search,” in Proceedings of the 9th International Conference
on Information Fusion. IEEE, 2006, pp. 1-7.

S. Simakov and F. Fletcher, “GPU acceleration of threat map
computation and application to selection of sonar field con-
trols,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2015, pp. 1827-1831.

C. Gilliam, B. Ristic, D. Angley, S. Suvorova, B. Moran,
F. Fletcher, H. Gaetjens, and S. Simakov, “Scheduling of mul-
tistatic sonobuoy fields using multi-objective optimization,” in
2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 3206-3210.

L. Devroye,  Non-Uniform Random Variate Generation,
Springer-Verlag, 1986.

“cuRAND Library: Programming Guide,” NVIDIA, PG-
05328-050, July 2019, https://docs.nvidia.com/cuda/.

C. Gilliam, D. Angley, S. Williams, B. Ristic, B. Moran,
F. Fletcher, and S. Simakov, “Covariance cost functions for
scheduling multistatic sonobuoy fields,” in 2018 21st Inter-
national Conference on Information Fusion (FUSION). IEEE,
2018, pp. 1-8.

S. Simakov, “Signal excess data and tools for multistatic sonar
emulation,” Tech. Report DSTO-TR-3026, DSTO, 2014.

H. Weinberg and R. E. Keenan, “Gaussian ray bundles
for modeling high-frequency propagation loss under shallow-
water conditions,” The Journal of the Acoustical Society of
America, vol. 100, no. 3, pp. 1421-1431, 1996.

[14]

[15]

[16]

[17]

[18]

[19]

(20]

B. Ristic, D. Angley, F. Fletcher, S. Simakov, H. Gaetjens,
S. Suvorova, and B. Moran, “Bayesian multitarget tracker
for multistatic sonobuoy systems,” in Proceedings of the 19th
International Conference on Information Fusion. IEEE, 2016,
pp. 2171-2178.

B. Ristic, D. Angley, S. Suvorova, B. Moran, F. Fletcher,
H. Gaetjens, and S. Simakov, “Gaussian mixture multitarget—
multisensor Bernoulli tracker for multistatic sonobuoy fields,”
IET Radar, Sonar & Navigation, vol. 11, no. 12, pp. 1790-
1797, 2017.

D. Angley, B. Ristic, S. Suvorova, B. Moran, F. Fletcher,
H. Gaetjens, and S. Simakov, “Non-myopic sensor scheduling
for multistatic sonobuoy fields,” IET Radar, Sonar & Naviga-
tion, vol. 11, no. 12, pp. 1770-1775, 2017.

D. Angley, S. Suvorova, B. Ristic, W. Moran, F. Fletcher,
H. Gaetjens, and S. Simakov, “Sensor scheduling for target
tracking in large multistatic sonobuoy fields,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2017, pp. 3146-3150.

B.-T. Vo, C.-M. See, N. Ma, and W. T. Ng, “Multi-sensor joint
detection and tracking with the Bernoulli filter,” IEEE Trans.
Aerospace and Electronic Systems, 2012.

B. Ristic and A. Farina, “Target tracking via multi-static
doppler shifts,” IET Radar, Sonar & Navigation, vol. 7, no.
5, pp. 508-516, 2013.

D. Musicki and B. La Scala, “Multi-target tracking in clut-
ter without measurement assignment,” IEEE Trans. Aerospace
and Electronic Systems, vol. 44, no. 3, pp. 877-896, July 2008.



