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Abstract—In this paper, we focus on dynamic tra-
jectory planning for an autonomous underwater vehi-
cle (AUV). Specifically, we are interested in planning
the trajectory of an AUV as it returns to a moving re-
covery vessel. To aid in this task, the AUV is equipped
with a passive, angle-only, sensor to enable localization
of the recovery vessel. Accordingly, we present an
algorithm that is capable of dynamically updating the
trajectory of the AUV given measurement data from
the passive sensor. Our approach is based on adapting
a static trajectory planning algorithm from robotics,
known as Rapidly-exploring Random Tree (RRT*),
to allow for localization and tracking of a dynamic
target (i.e. the recovery vessel). In contrast to dynamic
programming or fixed grid trajectory planning, the
RRT* offers a computationally efficient method for
long-term trajectory planning with probabilistic guar-
antees of optimality. In this framework, we explore
two options: trajectory planning based on minimising
the distance to the target; and trajectory planning
based on maximising the tracking accuracy of the
target using an information theoretic cost. Using AUV
recovery as an evaluation scenario, we analyse and
evaluate the proposed trajectory planning algorithm
against traditional dynamic programming methods. In
particular, we consider trajectory planning in noisy
and obstructed environments.

Index Terms—Trajectory optimisation, path plan-
ning, passive target tracking, RRT*, autonomous un-
derwater vehicle recovery

I. INTRODUCTION

In this paper, we focus on dynamic trajectory
planning for an autonomous underwater vehicle
(AUV). Specifically, we are interested in planning
the trajectory of an AUV as it returns to a moving
recovery vessel. To aid in this task, the AUV
is equipped with a passive, angle-only, sensor to
enable localization of the recovery vessel. Accord-
ingly, we present an algorithm that is capable of
dynamically updating the trajectory of the AUV
given measurement data from the passive sensor.

This research is supported by DST Group under the research
agreement “Trajectory Optimisation for a Moving Observer with
3-D Angle Only Sensor Measurements”.

Our approach is based on adapting a static trajec-
tory planning algorithm from robotics, known as
Rapidly-exploring Random Tree (RRT*), to allow
for localization and tracking of a dynamic target
(i.e. the recovery vessel).

A. Retrieving Autonomous Underwater Vehicles

Autonomous Underwater Vehicles (AUV) are
expected to play an increasingly important role
in a wide range of undersea applications such as
conducting surveys to map the seabed and locate
bottomed objects, sensing and characterising the un-
dersea environment, and monitoring the movements
and behaviours of surface vessels, underwater vehi-
cles, other sub-surface objects and/or marine life.
Vehicles operating in the underwater environment
typically rely on sonar (i.e. underwater acoustics)
as the primary method for sensing and communi-
cation over extended ranges due to the significant
attenuation of electromagnetic signals. Here we
consider several sonar based sensor and navigation
applications for an AUV operating in cooperation
with a surface vessel that supports deployment and
recovery of the AUV.

The problem of path planning for a mobile sur-
face vessel that maintains supervisory contact (us-
ing an acoustic communications link) with an AUV
executing a pre-planned mission was considered
in [1]. Here we consider an AUV that conducts
survey missions in a more autonomous manner, and
on completion of the mission or when signalled
by the support vessel via the communication link,
uses its on-board sensors and optimal trajectory
path planning to navigate safely back towards the
support vessel to rendezvous and surface within
a safe standoff distance for subsequent recovery.
The support vessel is assumed to be mobile and
is expected to transit along a straight line trajectory
at a constant relatively slow speed towards a safe
region (away from other vessels) to prepare for
recovery of the AUV. Signals transmitted via the



acoustic communications link can be used to assist
the AUV with the detection and identification of
the support vessel but are not used to control or
program the trajectory or destination of the AUV.
The final recovery location will not be known to
the AUV or the support vessel in advance and
will depend on how long it takes for the AUV to
navigate to a safe recovery location.

The AUV is equipped with a forward facing
high-frequency sonar sensor array that is used for
sensing and navigation, which operates primarily as
a passive acoustic sensor. The sensor array receives
the acoustic energy emitted from all nearby vessels
or objects located within the sensor’s field of view,
defined by the angular sector containing bearing and
elevation angles within ±60◦, with a finite angular
beam resolution of ±3.5◦. An on-board sonar pro-
cessing system determines the direction of arrival
of the received acoustic signals and uses this to
estimate and track the positions and velocities of all
observable signal sources over time. The estimated
state information associated with each track is then
used for optimal trajectory path planning to enable
the AUV to safely navigate towards the recovery
vessel in the shortest amount of time while avoiding
any other vessels or objects in the area.

The presence of other vessels or objects will im-
pose sensor measurement and physical space con-
straints within the optimal trajectory path planning
algorithms. Sensor measurement constraints result
from reduced detectability of the support vessel
caused by interference from other noise sources
within the same angular sector or increases in
overall received noise levels from noise sources
in close proximity to the sensor. Physical space
constraints result from maintaining minimum safe
separation from other vessels or objects, and, from
specified non-navigable areas such as shallow water
areas, shorelines, islands, physical structures in the
water, shipping channels or other restricted areas.
These latter ‘non-navigable’ physical constraints
are implemented as pre-programmed geographic
regions within the on-board processing system of
the AUV.

B. Randomly Exploring Random Trees

Figure 1 shows a scenario where an AUV needs
to navigate a fleet of interfering sources using its
passive sonar to rendezvous with a moving recovery
vessel.

Previous work [1], [2] was based on n−step
lookahead on the tracker processing. The new algo-
rithm is based on RRT* developed in the robotics
literature [3], [4] for motion planning. The proba-

Fig. 1: Example scenario for an AUV to navigate. The path of the
moving objective is indicated by the blue line and the squares
indicate the position of the interfering sources. Note that the
AUV is initialised at the origin.

function RRT*(o, g, η, N)
t← {o}
n← 0
while n < N do

x←SAMPLE
x′ ←STEER(t, x)
t← t+ {x′}
t←REWIRE(t)
n← n+ 1

end while
return t

end function
Fig. 2: Original RRT* algorithm

bilistic nature allows soft constraints to be imple-
mented as required.

The RRT* algorithm is provably optimal for a
fixed objective and arbitrary allowable manoeuvres
at each time step, which does not hold in our case.
Figure 2 shows the original RRT* algorithm. It
begins with picking a point at random in the region
of interest (SAMPLE). Then you move from the
nearest point in the tree towards that point as far as
is feasible (STEER) usually by giving a maximum
allowable distance travelled η. Limits on feasibility
are placed by speed restrictions and obstructions
in the region. The cost of this step is then added
to the cost recorded at the originating node. But,
before this cost is encoded in the tree, a search is
conducted locally to see if there is an alternative
route to the new point that is lower cost (REWIRE).
One of the keys to the RRT* algorithm is that this
search need only proceed locally, within a distance



r given by

r = min

{(
γ log n

ξdn

)1/d

, η

}
(1)

where d is the dimension of the space, n is the
number of sample points, γ is a constant and ξd
is the volume of the unit ball in Rd Figure 3

Fig. 3: Diagram of rewire step in RRT* algorithm. The new
sample (blue) is linked in to the tree at its nearest neigbour
(red). A search, that only extends a maximum of one link length
around the sample, reveals a lower cost link. The old edge is
deleted and the new edge created (green).

shows how, if a new lower cost link is possible
then, the original link is deleted and the alternative
instantiated and the new (lower) cost encoded at the
new node.

This algorithm is probabilistically complete and
asymptotically optimal for finding a path to a goal
through an unobstructed region. Specifically the
probability of the algorithm converging to the opti-
mal path increases to 1 as the number of samples
N increases.

C. Plan of the Paper

In Section II we detail the addition we have
made to the RRT* algorithm to allow its use in
our scenario. Section III describes our RRT*-based
Trajectory Planning algorithm. Section IV discusses
the results obtained.

II. MOTION PLANNING FOR TRAJECTORY
OPTIMISATION

In this section we shall describe our extensions
to the RRT* algorithm that address the use of mo-
bile objectives, dynamic cost functions, kinematic
constraints, focused sampling and track estimation
accuracy costs.

function COST(xi, li, s)
c← η
if Angle(xi, s) - Angle(xi, li) ≤ 3.5° then

c← c+BW
else if Angle(xi − xi−1, li) ≥ 60◦ then

c← c+ FOV
end if
return c

end function
Fig. 4: Dynamic Cost function: BW is the penalty for an
interfeering source lining up with the target and FOV is the
penalty for the target leaving the AUV sensor’s field of view

A. Mobile Objective and Dynamic Costs

In order to incorporate the motion of the objective
into the algorithm we take advantage of the fact
that the AUV uses a tracker to keep an estimate
of the position and velocities of its recovery vessel
and the other vessels in its field of view. Using
this information and the fact that each step in the
tree corresponds to an elapsed time, we can use an
updated position of the objective when calculating
in the tree.

For example, if our new point x is attached to
the tree at a depth k from the origin, then the cost
function can be evaluated using the new objective
location li = l0+kv where l0 is the original location
and v is the velocity estimate in units of tree steps
η.

This enables the implementation of dynamic cost
functions where we penalise the alignment of an
interfering source and the objective within the same
received beamwidth (±3.5◦), and maintain the ob-
jective within the sensor’s field of view (±60◦).
This avoids the loss of detections that would result
from the recovery vessel being obscured by inter-
fering noise sources associated with other nearby
vessels, or located outside the sensor’s field of view,
which would impact the ability of the tracker to
provide accurate target state estimates. The form of
these dynamic cost functions is shown in Figure 4,
where xi is the location of the new node which is
i steps from the root, li is the expected location of
the objective after i steps and s are the locations of
the interfering sources. The values for the penalties
were set at BW = 50 and FOV = 25

B. Kinematic Constraints

The RRT* algorithm [3] has been modified to
incorporate motion constraints for the AUV by
limiting the maximum change in direction at each
time step to 10°. This alters the STEER procedure
so that the vector joining the new point x′ to the



tree always lies within 10°of the previous leg of the
tree.

Figure 5 is the result of our modified RRT*
algorithm. 1000 samples were taken from a uniform
distribution across the region which is a 6x6x6
cube centred at (0,0,0). The AUV starts at (-3,-3,-
3) pointing directly at the recovery vessel and has
a maximum speed of η = 0.2 per unit time. The
recovery vessel starts at (2,2,-2) moving in direction
(0,0,1) at a constant speed of 0.09 per unit time.

Fig. 5: An example RRT tree with the ship and its motion marked
in red, interfering sources in blue and the AUV’s initial position
in green and optimal path in yellow.

C. Using a spatial index to speed tree searches

A costly step in the RRT* algorithm is finding
the nearest node in the tree to the randomly sampled
point, which is O(n2). The usual K-d and balanced-
box trees will not work in this situation as we need
to build the index incrementally as the tree is con-
structed. Fortunately there is an incremental spatial
index, the R-Tree [5] with a C++ implementation
libspatialindex [6] and a python wrapper
rtree [7].

Table I shows expurgated views of the a profile
for the RRT* algorithm run for 4 steps each of 1000
samples comparing raw tree search performance to
the spatial index, where extend is the main loop
with nearest and near the nearest neighbour
functions for both implementations. Finally, the
insert entry shows the cost of building the spatial
index.

D. Trackers and Focussed Sampling

We model the measurements made by the AUV’s
sensor using a simplified sonar equation with a
simplified uniform propagation model and a discrete
beam pattern for each of the sensor received beam
components.

The AUV’s tracker is a Sequential Monte-Carlo
Multi-Hypothesis Tracker (SMC-MHT) described
in [1], [8]. It is a multiple hypothesis tracker which
detects and estimates the underlying target state

ncalls time filename:lineno(function)
Tree search
4000 55.758 rrtstar.py:92(extend)
4020 24.965 rrtstar.py:49(nearest)
4000 28.599 rrtstar.py:69(near)

Spatial index
4000 6.914 rrtstar.py:112(extend)
4020 3.388 rrtstar.py:61(nearest)
4000 1.067 rrtstar.py:84(near)
4011 0.848 rtree.py:341(insert)

TABLE I: Comparison of the tree search and spatial index
methods for nearest neighbour calculation

with unknown measurement origin by enumerat-
ing and evaluating all possible measurement origin
hypotheses. The sequential Monte Carlo sampling
technique is used to approximate the posterior prob-
abilities of the association hypotheses and make the
approach computationally tractable.

It is important to be able to separate out the
effect of the tracker on the trajectory optimisation
algorithm. We shall see one approach by process-
ing the data in the next section. Our approach
is using what we have termed a ‘Ground Truth’
tracker, which outputs the actual position of the
target with a simulated diagonal covariance an order
of magnitude smaller than those predicted by the
actual trackers. This enables repeatable runs with
out interference from the random nature of the
tracking algorithms.

Usually the SAMPLE procedure uses a uniform
distribution over the area to be covered. Here we
use the position and covariance estimates from the
tracker and the parameters of a multivariate normal
distribution and sample the space focussed around
the objective location.

E. Accuracy Cost

An accuracy cost estimate can be defined after
[1] as the expectation of the penalty functions for
field-of-view and beamwidth obstructions

Ja = detP Eπ [FOV (x)BW (x)] (2)

where P is the posterior covariance of AUV po-
sition estimate and π is the prior distribution of
the objective track estimate. FOV is the field of
view penalty and BW(x) is the Beamwidth penalty
from the dynamic cost function in Figure 4 for
the objective at position x. In order to satisfy
the completeness and optimality criteria for RRT*
(additivity and continuity) we use log Ja as the cost
function.

An example of the resulting paths is shown in
Figure 6. The loop and the slalom-like final chase
to the target shows the accuracy cost is having



the correct effect on the bearing-only sensor by
requiring changes in relative bearing to increase the
information content of measurements.

That the loop is possible is due to the scale of
the accuracy measure and the requirements of the
RRT* algorithm. The RRT* algorithm requires that
the cost function be additive, while the determinant
of the covariance updates multiplicatively. In order
to accomodate this detail we take the log of the
accuracy. This rescaling of the accuracy reduces the
effect of the FOV penalty so that it is essentially
moot. This is another argument for developing an
information-based criterion that does not rely on
arbitrary parameters to enforce its requirements on
the planned trajectory.

The results of comparing the original implemen-
tation using the 2 step lookahead algorithm with
the newly integrated RRT* algorithm are shown in
Figures 11– 15

Fig. 6: A single RRT* optimal trajectory created by optimising
the accuracy cost. The AUV is initialised at the origin.

III. IMPLEMENTING RRT*-BASED TRAJECTORY
OPTIMISATION

The tree shown in Figure 5 is one step in our
trajectory optimisation algorithm. Ultimately only
the first step of the yellow path will be used to
initialise another run of the RRT* motion plan-
ner. The full trajectory optimisation algorithm is
described in Figure 7. This involves generating an
RRT* tree at each step and using the first edge of
the tree that ends closest to the target, where the
FIRSTSTEP(t, i) returns the first step in the branch
of tree t at depth i which is closest to the goal. This
is calculated by moving in the direction of the first
leg of the optimal path for a distance corresponding
to the speed of the AUV.

A. Goal oriented stopping criteria

In the original RRT* implementation the cost
minimised the distance to the objective. However,
a more realistic criteria for a moving observer is

function OPTIMISETRAJEC-
TORY(length, samples)

path← [InitialNode]
for i in 1..length do

tree←RRT*(samples)
path ← path +

FIRSTSTEP(tree, length− i)
end for
return path

end function
Fig. 7: RRT*-based Trajectory Optimisation

to use its passive sensor to approach the target,
and then to terminate the approach or switch to
other close-range sensing methods to avoid complex
nonlinear near-field estimation effects associated
with angles-only tracking problems. Accordingly
the stopping criteria used here was changed to
closing within 300m of the target and the cost
function adjusted to minimise distance from the
target rather than distance travelled.

This is a fundamental distinction between our
approach and the other greedy approaches, which
are limited in the number of steps ahead they look
by the exponential growth of the number of possib-
lities to consider. Instead, we can set goal-oriented
stopping criteria for the trajectory optimisation, like
the one detailed above: Stop when you are within
300m of the objective.

IV. RESULTS AND DISCUSSION

In order to fully exercise the trackers and the
trajectory optimisation algorithms comprehensively
every combination of tracker, scenario and algo-
rithm was run 30 times.

A. Distance Cost

Figures 8–10 show the results for those simula-
tions using the distance cost. For each scenario we
plot the raw tracks and resulting trajectories for each
tracker and algorithm, then a density map of relative
trajectories to isolate the effect of the tracker and
illustrate the properties of the trajectories produced
by the respective algorithms. Finally, we assess
the performance of the competing algorithms by
calculating the final distance to the target for each
algorithm and comparing the two.

Figure 8 shows the 30 Trajectories optimised
using 2-step lookahead trajectory planning for the
scenario in Figure 1. This has 6 interfering sources
(3 in the near-field, 3 in the far) with the target
tracing a path between the two sets of interfering
sources. We can see the strong dependence of the



(a) SMC-MHT Tracker (b) Ground Truth

Fig. 8: 30 Trajectories optimised using 2-step lookahead trajec-
tory planning for the scenario in Figure 1 using the distance cost.
The AUV is initialised at the origin.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 9: 30 Trajectories optimised using RRT* trajectory planning
for the scenario in Figure 1 using the distance cost. The AUV
is initialised at the origin.

trajectory on the track by comparing each of the
trackers to the Ground truth tracker.

The fan structures in the optimised trajectories
are most likely caused by inaccurate predictions of
the target location interacting with the middle inter-
fering source in the far field. The n-step lookahead
algorithm has hard constraints that forbid a co-linear
relationship of the target, observer, and interfering
source. So an incorrect target location can cause
wild trajectories. In the end all the trajectories seem
to converge to a standard approach to the target. In
Figure 10 we see that the RRT*-based algorithm
produces trajectories that close much quicker with
the object than the two step look ahead algorithm.
This is due to the soft constraints and the longer
lookahead horizon.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 10: Distance to objective after 10 minutes for the scenario
in Figure 1 using distance cost.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 11: 30 Trajectories optimised using 2-step lookahead trajec-
tory planning for the scenario in Figure 1 using Accuracy Cost.
The AUV is initialised at the origin.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 12: 30 Trajectories optimised using RRT* trajectory plan-
ning for the scenario in Figure 1. The AUV is initialised at the
origin.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 13: Probability of relative observer-target track using 2-step
lookahead trajectory planning for the scenario in Figure 1.

B. Accuracy Cost Results

The main difference shown in Figures 11 – 14 is
that even though no distance optimisation has been
performed, the trajectories still move towards the
objective. This is due to focused sampling where
the new additions to the tree are sampled from the
distribution of the objective estimate produced by
the AUV’s tracker.

(a) SMC-MHT Tracker (b) Ground Truth

Fig. 14: Probability of relative observer-target track using RRT*
trajectory planning for the scenario in Figure 1.



(a) SMC-MHT Tracker (b) Ground Truth

Fig. 15: Distance to objective after 10 minutes for scenario in
Figure 1 using accuracy cost

Fig. 16: Optimal path for 1km exclusion zone. Blue indicates
points on the path that the beamwidth constraint is violated and
red indicates the same for the field-of-view constraint.

Also present is the same lack of smoothness in
the RRT* paths that increases their overall length
while a qualitative viewing of the paths in Figure 12
shows they should match or even exceed the per-
formance of the n-step lookahead algorithm.

Figure 15 shows the distance to the objective
after 10 minutes of simulation for both the 2-step
lookahead and the RRT* algorithms, showing the
latter outperforming the former. In both cases the
difference in the means is statistically significant
for α = 0.05 but the difference is much greater
for the Ground Truth tracker which shows it is the
errors in the tracker that cause the variation in the
distance to the objective. The larger variation is due
to the roughness of the RRT* algorithm.

C. Exclusion around interfering sources

As a first step towards an improved measurement
model, we implemented a 1km exclusion zone
around each of the interfering sources. This was
implemented by discarding any of the randomly
sampled points from the SAMPLE function in the
RRT* algorithm of Figure 2 that fell inside the
exclusion zone. Figure 16 shows a single trajectory
for the target distance cost.

Figure 17 shows the results for 30 runs using
both the Ground truth and SMC-MHT trackers and

(a) raw tracks Ground Truth
tracker

(b) raw tracks SMC-MHT
tracker

(c) relative track histogram
Ground Truth tracker

(d) relative track histogram
SMC-MHT tracker

Fig. 17: Simulations with 1km exclusion zone 30 runs. The AUV
is initialised at the origin.

the relative trajectory probability distributions. The
RRT* paths are clearly avoiding the interfering
source and choosing the minimum distance path
around the interfering source. In Figure 17(b) it
appears that when the raw track is further away
then it is best to go clockwise round the interfering
source rather than counter-clockwise as the vast
majority of the paths do. Further work will be done
to understand this behaviour.

V. CONCLUSIONS AND FURTHER WORK

We have extended the original RRT* model into a
fully fledged optimisation algorithm capable of han-
dling moving objectives, focussed sampling, goal
centered lookahead and accuracy maximisation and
shown that it is more flexible, computationally sim-
pler and better performing than the corresponding
tracker based greedy 2-step lookahead algorithm.

Further work is need to address some shortcom-
ings in our existing algorithm and simulation imple-
mentations. A more accurate sensor model would
allow us to more accurately represent the effect of
the interfering sources on the measurements made
by sensor and thus provide optimal trajectories that
more closely reflect the real-world sitution. The
arbitrary penalties hard coded in Figure 4 will be
replaced with an information criterion that takes
into account the effect that the missed sensor mea-
surements will have on the accuracy of the objective
position estimate from the tracker. Smoothing of the
RRT*-based trajectories would be useful and we
are currently incorporating the Dubins model as a
method for smoothing the kinematics of the paths
produced [9], [10].
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