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Multistatic Sonobuoy Fields

A network of transmitters and sensors distributed across a large search
region

Transmitter

Sensor
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At one transmission time:

Choose a Transmitter: T = {j1, j2, . . . , jNT
}

where NT is the number of transmitters in the field

Choose a Waveform: W = {w1, w2, . . . , wNd
}

where Nd is the number of possible waveforms

Possible waveforms:

Continuous Wave (CW) or Frequency Modulated (FM) waveform

1kHz or 2kHz frequency

2 second or 8 second duration
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Scheduling Problem

# Choose sequence of transmitters and waveforms to satisfy tasks

At one transmission time:

Choose a Transmitter: T = {j1, j2, . . . , jNT
}

where NT is the number of transmitters in the field

Choose a Waveform: W = {w1, w2, . . . , wNd
}

where Nd is the number of possible waveforms

Action space:

Choose an action: a ∈ A, A = T ×W
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Conflicting Objectives

Track vs Search =⇒ Which transmitter to choose...

Transmitter

Sensor
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Conflicting Objectives
Our Approach:
Combine both tasks in multi-objective framework and use multi-objective

optimization to decide scheduling

Transmitter

Sensor
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Modelling, Measurements & Tracking Algorithm
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‘x’ = Transmitters, ‘o’ = Receivers

Sonobuoy Field Description:

Transmitter positions
sj =

[
xjs, y

j
s

]T
Receiver positions

ri =
[
xir, y

i
r

]T
Assume positions are known at all
times∗

∗Each buoy contains RF communications and may contain GPS equipment
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‘x’ = Transmitters, ‘o’ = Receivers

Target Description:

Target Position at time tk:
p = [xk, yk]

T

Target Velocity at time tk:
v = [ẋk, ẏk]

T

Time-varying state
xk = [pT

k,v
T

k]
T
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‘x’ = Transmitters, ‘o’ = Receivers

Target Motion:

Noisy linear constant-velocity model

xk =

([
1 T
0 1

]
⊗ I2

)
xk−1︸ ︷︷ ︸

f(xk−1)

+ ek

Process noise ek is Gaussian with
variance

Q = ω

[
T 3/3 T 2/2
T 2/2 T

]
⊗ I2

where T = tk − tk−1 is the sampling in time
⊗ is the Kronecker product and I2 is 2× 2 identity matrix
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‘x’ = Transmitters, ‘o’ = Receivers

Measurements:

Signal amplitude β and Kinematic
measurement z

z = h
(i)
j (xk) +w

(i)
j

Measurements collected from a
subset of receivers

Buoys have two waveform
modalities

Frequency Modulated (FM)
Continuous Wave (CW)
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‘x’ = Transmitters, ‘o’ = Receivers

Using FM waveforms:

Bistatic Range:
|pk − ri|+ |pk − sj |

Angle from Receiver:

arctan
(

yk−yi
r

xk−xi
r

)
Good positional information
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‘x’ = Transmitters, ‘o’ = Receivers

Using CW waveforms:

Bistatic Range:
|pk − ri|+ |pk − sj |

Angle from Receiver:

arctan
(

yk−yi
r

xk−xi
r

)
Bistatic Range-Rate:

vT

[
pk−ri
|pk−ri| +

pk−si
|pk−si|

]
Good velocity information
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Modelling, Measurements & Tracking Algorithm
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‘x’ = Transmitters, ‘o’ = Receivers

Tracking Challenges:

High levels of clutter

Non-linear measurements

Low probability of detection

Many possible algorithms: ML-PDA, MHT, PMHT, JIPDA,
PHD/CPHD, ... etc
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‘x’ = Transmitters, ‘o’ = Receivers

The tracker:

Multi-Sensor Bernoulli filter[1]

(optimal multi-sensor Bayesian filter
for a single target)

Linear Multi-Target (LMT)
Paradigm[2]

Gaussian mixture model
implementation[3]

Process FM & CW measurements

[1] B. Ristic el al., ‘A tutorial on Bernoulli filters: Theory, implementation and applications’, IEEE Trans. Signal Process., 2013.
[2] D. Mušicki and B. La Scala, ‘Multi-Target Tracking in Clutter without Measurement Assignment’, IEEE Trans. Aerosp. Electron. Syst., 2008.
[3] B. Ristic el al., ‘Gaussian Mixture Multitarget Multisensor Bernoulli Tracker for Multistatic Sonobuoy Fields’, IET Radar, Sonar & Navig., 2017.
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Tracking Reward

Transmitter

Sensor

Previous Trajectory

Information

Predicted

Trajectory

Given previous tracking:

# Measure the gain in tracking information from action a

Gilliam et al. Cost Functions for Scheduling Sonobuoy Fields 7 / 16



Tracking Reward

Transmitter

Sensor

Previous Trajectory

Information

Predicted

Trajectory

Approximate information matrix:

Single track: trace

[
JPredict +

∑
i∈R

P i
d(a)J

i
Measure(a)

]

Trace of only the positional elements of information matrix
P i
d(a) Expected probability of detecting track
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Tracking Reward

Transmitter

Sensor

Previous Trajectory

Information

Predicted

Trajectory

Predicted Information Matrix:

JPredict =
[
Fk−1Pk−1 [Fk−1]

T
]−1︸ ︷︷ ︸

Propagation of error covariance due to motion model

where Fk−1 is the Jacobian of f(xk−1) and Pk−1 is the error covariance from tracker
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Tracking Reward

Transmitter

Sensor

Previous Trajectory

Information

Predicted

Trajectory

Measurement Information Matrix:

JMeasure =
[
Hi

k(a)
]T [

Ri
k(a)

]−1
Hi

k(a)︸ ︷︷ ︸
Gain in information from action

where Hi
k(a) is the Jacobian of ha(xk−1) and Ri

k(a) is the measurement covariance
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How big is an ellipse

Figure: Ellipse showing the eigenvectors of the matrix definition of an ellipse,
xΣxT = C
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Possible Cost Functions

Analysed scheduling of multistatic sonobuoy fields using cost functions
based on the eigenvalues of the covariance estimate, P(a),
λ1 ≥ λ2 . . . ≥ λn

1 Jtrace(a) = traceP(a) =
∑

n λn

2 Jdet(a) = detP(a) =
∏

n λn

3 Jpres(a) = 1/ traceP(a)−1

4 Jmax(a) = maxn λn = λ1

5 Jjoint(a) = λxλv
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Analysis of Scheduler - Set Up
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‘x’ = Transmitters, ‘o’ = Receivers

Set-up:

4 × 4 transmitter grid

5 × 5 receiver grid

Buoy separation = 15km

50 Minute Scenario

1 transmission/minute

600 Simulations

Realistic measurements =⇒ Bistatic Range Independent Signal Excess (BRISE)

simulation environment
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‘x’ = Transmitters, ‘o’ = Receivers

Set-up:

4 × 4 transmitter grid

5 × 5 receiver grid

Buoy separation = 15km

50 Minute Scenario

1 transmission/minute

600 Simulations

Analyse the performance of the scheduler as cost function varies
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Analysis of Scheduler - Results
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Figure: Performance of the scheduler shows the mean position and velocity
error obtained using the different cost functions. The blue lines for target speed
of 8 knots, and the red lines for a target speed of 14 knots
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Analysis of Scheduler - Transmitter Choice
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(a) Using Jprec
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(b) Using Jdet
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(c) Using Jjoint
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(d) Using Jtrace
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(e) Using Jmax

Figure: Transmitter histograms for the target’s speed of 14 knots, showing the
proportion of transmissions from each source when using the different cost
functions.
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Analysis of Scheduler - Waveform Choice
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Figure: Choice of waveforms used when the target’s speed is 8 and 14 knots.
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Analysis of Scheduler - Results

0.04 0.06 0.08 0.1 0.12

Mean Velocity Error (m/s)

0

5

10

15

20

25

30

35

M
e

a
n

 P
o

si
ti

o
n

 E
rr

o
r 

(m
)

J
prec

J
det

J
joint J

trace

J
max

J
prec

J
det

J
joint

J
trace

J
max

Target Speed = 8 knots

Target Speed = 14 knots

Figure: the means of both errors on a scatter
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Conclusions

Analysed scheduling of multistatic sonobuoy fields using cost
functions based on the eigenvalues of the covariance estimate, P(a),
λ1 ≥ λ2 . . . ≥ λn

1 Jtrace(a) = traceP(a) =
∑

n λn

2 Jdet(a) = detP(a) =
∏

n λn

3 Jpres(a) = 1/ traceP(a)−1

4 Jmax(a) = maxn λn = λ1

5 Jjoint(a) = λxλv

Analysed proposed scheduling via optimum source-waveform action
that minimized the covariance cost function.

Demonstrated trade-off between position and velocity accuracy varies
Trade-off characterised in terms of points on the Pareto front
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The End

Thank you for listening
Any Questions?

Gilliam et al. Cost Functions for Scheduling Sonobuoy Fields 16 / 16


	Multistatic Sonobuoy Fields
	Recap on Tracking in Sonobuoy Fields
	Sonobuoy Scheduling Using Covariance-based Cost Functions
	Simulation Results
	Conclusions

