Covariance Cost Functions for Scheduling Multistatic Sonobuoy Fields

Christopher Gilliam¹, Daniel Angley², Sofia Suvorova², Branko Ristic¹, Bill Moran², Fiona Fletcher³, Sergey Simakov³, **Simon Williams**²

¹ School of Engineering, RMIT University, Australia
 ² Electrical & Electronic Engineering, The University of Melbourne, Australia
 ³ Maritime Division, Defence Science and Technology Group, Australia

1 / 16

Department of Defence Science and Technology

11th July 2018

Outline

1 Multistatic Sonobuoy Fields

- \blacksquare Two Tasks \implies Search for and track underwater targets
- Performance dependent on scheduling sonobuoys
- 2 Recap on Tracking in Sonobuoy Fields
 - Geometric Modelling and Measurements
 - Tracking algorithm used to track targets

3 Sonobuoy Scheduling Using Covariance-based Cost Functions

- Tracking Reward Function
- The 'size' of an ellipsoid
- Covariance-based Cost Functions

4 Simulation Results

5 Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

A network of transmitters and sensors distributed across a large search region

Two tasks of the system:

Detect targets that are unknown to the system

Two tasks of the system:

Detect targets that are unknown to the system

Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system

マロト イラト イラト

Two tasks of the system:

- Detect targets that are unknown to the system
- Accurately track targets known to the system

・ 回 トーイ 戸 トーイ 戸 ト

 $\, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks

・ロト ・回ト ・ヨト ・ヨト ・ヨー のへで

 $\, \, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks At one transmission time:

Choose a Transmitter: $\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W} = \{w_1, w_2, \dots, w_{N_d}\}$

where N_d is the number of possible waveforms

 $\, \, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks At one transmission time:

Choose a Transmitter: $\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W} = \{w_1, w_2, \dots, w_{N_d}\}$

where N_d is the number of possible waveforms

Possible waveforms:

- Continuous Wave (CW) or Frequency Modulated (FM) waveform
- 1kHz or 2kHz frequency
- 2 second or 8 second duration

4 / 16

 $\, \, \hookrightarrow \,$ Choose sequence of transmitters and waveforms to satisfy tasks At one transmission time:

Choose a Transmitter: $\mathcal{T} = \{j_1, j_2, \dots, j_{N_T}\}$

where N_T is the number of transmitters in the field

Choose a Waveform: $\mathcal{W} = \{w_1, w_2, \dots, w_{N_d}\}$

where N_d is the number of possible waveforms

Action space:

Choose an action:
$$a \in \mathcal{A}, \quad \mathcal{A} = \mathcal{T} \times \mathcal{W}$$

4 / 16

Conflicting Objectives

Track vs Search \implies Which transmitter to choose...

イロト 不得 とくき とくきとう きい

Conflicting Objectives Our Approach:

Combine both tasks in multi-objective framework and use multi-objective optimization to decide scheduling

不同 とうきょうきょう

'x' = Transmitters, 'o' = Receivers

Sonobuoy Field Description:

- Transmitter positions $\mathbf{s}_j = \left[x_s^j, y_s^j
 ight]^{^{\mathrm{T}}}$
- Receiver positions $\mathbf{r}_i = \left[x_r^i, y_r^i\right]^{^{\mathrm{T}}}$
- Assume positions are known at all times*

*Each buoy contains RF communications and may contain GPS equipment

ヨト イヨト

6 / 16

'x' = Transmitters, 'o' = Receivers

Target Description:

- Target Position at time t_k : $\mathbf{p} = [x_k, y_k]^{\mathrm{T}}$
- Target Velocity at time t_k : $\mathbf{v} = [\dot{x}_k, \dot{y}_k]^{\mathrm{T}}$
- Time-varying state $\mathbf{x}_k = [\mathbf{p}_k^{\mathrm{\scriptscriptstyle T}}, \mathbf{v}_k^{\mathrm{\scriptscriptstyle T}}]^{\mathrm{\scriptscriptstyle T}}$

ヨート

'x' = Transmitters, 'o' = Receivers

Target Motion:

Noisy linear constant-velocity model

$$\mathbf{x}_{k} = \underbrace{\left(\begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} \otimes \mathbf{I}_{2} \right) \mathbf{x}_{k-1}}_{f(\mathbf{x}_{k-1})} + \mathbf{e}_{k}$$

Process noise e_k is Gaussian with variance

$$\mathbf{Q} = \omega \begin{bmatrix} T^3/3 & T^2/2 \\ T^2/2 & T \end{bmatrix} \otimes \mathbf{I}_2$$

3.5 3

6 / 16

where $T = t_k - t_{k-1}$ is the sampling in time \otimes is the Kronecker product and I_2 is 2×2 identity matrix

'x' = Transmitters, 'o' = Receivers

Measurements:

- Signal amplitude β and Kinematic measurement \mathbf{z} $\mathbf{z} = \mathbf{h}_{i}^{(i)}(\mathbf{x}_{k}) + \mathbf{w}_{i}^{(i)}$
- Measurements collected from a subset of receivers
- Buoys have two waveform modalities
 - Frequency Modulated (FM)
 - Continuous Wave (CW)

'x' = Transmitters, 'o' = Receivers

Using FM waveforms:

Bistatic Range:
$$|\mathbf{p}_k - \mathbf{r}_i| + |\mathbf{p}_k - \mathbf{s}_j|$$

• Angle from Receiver:

$$\arctan\left(\frac{y_k - y_r^i}{x_k - x_r^i}\right)$$

Good positional information

ヨート

'x' = Transmitters, 'o' = Receivers

Using CW waveforms:

Bistatic Range:
$$|\mathbf{p}_k-\mathbf{r}_i|+|\mathbf{p}_k-\mathbf{s}_j|$$

- Angle from Receiver: $\arctan\left(\frac{y_k - y_r^i}{x_k - x_r^i}\right)$
- **Bistatic Range-Rate:** $\mathbf{v}^{\mathrm{T}} \begin{bmatrix} \frac{\mathbf{p}_{k} - \mathbf{r}_{i}}{|\mathbf{p}_{k} - \mathbf{r}_{i}|} + \frac{\mathbf{p}_{k} - \mathbf{s}_{i}}{|\mathbf{p}_{k} - \mathbf{s}_{i}|} \end{bmatrix}$
- Good velocity information

A 34 b

Tracking Challenges:

- High levels of clutter
- Non-linear measurements
- Low probability of detection

'x' = Transmitters, 'o' = Receivers

Many possible algorithms: ML-PDA, MHT, PMHT, JIPDA, PHD/CPHD, ... etc

6 / 16

The tracker:

- Multi-Sensor Bernoulli filter^[1] (optimal multi-sensor Bayesian filter for a single target)
- Linear Multi-Target (LMT) Paradigm^[2]
- Gaussian mixture model implementation^[3]
- Process FM & CW measurements

- 4 回 ト 4 回 ト

B. Ristic et al., 'A tutorial on Bernoulli filters: Theory, implementation and applications', IEEE Trans. Signal Process., 2013.
 D. Mušicki and B. La Scala, 'Multi-Target Tracking in Clutter without Measurement Assignment', IEEE Trans. Aerosp. Electron. Syst., 2008.
 B. Ristic et al., 'Gaussian Mixture Multitarget Multisensor Bernoulli Tracker for Multistatic Sonobuoy Fields', IET Radar, Sonar & Navig., 2017.

Given previous tracking:

 $\, \hookrightarrow \,$ Measure the gain in tracking information from action a

化间面 化苯基苯化基苯

Approximate information matrix:

$$\mathsf{Single track:} \qquad \mathsf{trace} \left[\mathbf{J}_{\mathsf{Predict}} + \sum_{i \in \mathcal{R}} P_d^i(a) \mathbf{J}_{\mathsf{Measure}}^i(a) \right]$$

Trace of only the positional elements of information matrix $P^i_d(a)$ Expected probability of detecting track

1

不同 医不足 医下下

Predicted Information Matrix:

$$\underbrace{\mathbf{J}_{\mathsf{Predict}} = \left[\mathbf{F}_{k-1}\mathbf{P}_{k-1}\left[\mathbf{F}_{k-1}\right]^{\mathrm{T}}\right]^{-1}}_{\mathsf{Propagation of error covariance due to motion model}}$$

where \mathbf{F}_{k-1} is the Jacobian of $f(\mathbf{x}_{k-1})$ and \mathbf{P}_{k-1} is the error covariance from tracker

化口水 化固水 化压水 化压水

Measurement Information Matrix:

$$\underbrace{\mathbf{J}_{\mathsf{Measure}} = \begin{bmatrix} \mathbf{H}_k^i(a) \end{bmatrix}^{^{\mathrm{T}}} \begin{bmatrix} \mathbf{R}_k^i(a) \end{bmatrix}^{-1} \ \mathbf{H}_k^i(a)}_{\mathsf{Gain in information from action}}$$

where $\mathbf{H}_k^i(a)$ is the Jacobian of $h_a(\mathbf{x}_{k-1})$ and $\mathbf{R}_k^i(a)$ is the measurement covariance

How big is an ellipse

Figure: Ellipse showing the eigenvectors of the matrix definition of an ellipse, $x\Sigma x^T=C$

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \operatorname{trace} \mathbf{P}(a) = \sum_{n} \lambda_{n}$$

2 $\mathcal{J}_{\text{det}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_{n}$
3 $\mathcal{J}_{\text{pres}}(a) = 1/\operatorname{trace} \mathbf{P}(a)^{-1}$
4 $\mathcal{J}_{\text{max}}(a) = \max_{n} \lambda_{n} = \lambda_{1}$

5
$$\mathcal{J}_{\mathsf{joint}}(a) = \lambda^x \lambda^v$$

Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \text{trace } \mathbf{P}(a) = \sum_{n} \lambda_n$$

2 $\mathcal{J}_{\text{trace}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_n$

2
$$\mathcal{J}_{det}(a) = \det \mathbf{P}(a) = \prod_n \lambda_n$$

3
$$\mathcal{J}_{\text{pres}}(a) = 1/\operatorname{trace} \mathbf{P}(a)^{-}$$

4
$$\mathcal{J}_{\max}(a) = \max_n \lambda_n = \lambda_1$$

5
$$\mathcal{J}_{\mathsf{joint}}(a) = \lambda^x \lambda^v$$

Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \operatorname{trace} \mathbf{P}(a) = \sum_{n} \lambda_{n}$$

2 $\mathcal{J}_{\text{det}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_{n}$
3 $\mathcal{J}_{\text{pres}}(a) = 1/\operatorname{trace} \mathbf{P}(a)^{-1}$

4
$$\mathcal{J}_{\max}(a) = \max_n \lambda_n = \lambda_1$$

5
$$\mathcal{J}_{\mathsf{joint}}(a) = \lambda^x \lambda^v$$

Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \operatorname{trace} \mathbf{P}(a) = \sum_{n} \lambda_{n}$$

2 $\mathcal{J}_{\text{det}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_{n}$
3 $\mathcal{J}_{\text{pres}}(a) = 1/\operatorname{trace} \mathbf{P}(a)^{-1}$
4 $\mathcal{J}_{\max}(a) = \max_{n} \lambda_{n} = \lambda_{1}$
5 $\mathcal{J}_{\text{ioint}}(a) = \lambda^{x} \lambda^{v}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \operatorname{trace} \mathbf{P}(a) = \sum_{n} \lambda_{n}$$

2 $\mathcal{J}_{\text{det}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_{n}$
3 $\mathcal{J}_{\text{pres}}(a) = 1/\operatorname{trace} \mathbf{P}(a)^{-1}$
4 $\mathcal{J}_{\max}(a) = \max_{n} \lambda_{n} = \lambda_{1}$
5 $\mathcal{J}_{\text{joint}}(a) = \lambda^{x} \lambda^{v}$

Analysis of Scheduler - Set Up

'x' = Transmitters, 'o' = Receivers

Set-up:

- 4 \times 4 transmitter grid
- 5 × 5 receiver grid
- Buoy separation = 15km
- 50 Minute Scenario
- 1 transmission/minute
- 600 Simulations

Realistic measurements ⇒ Bistatic Range Independent Signal Excess (BRISE) simulation environment

Analysis of Scheduler - Set Up

'x' = Transmitters, 'o' = Receivers

Set-up:

- 4 \times 4 transmitter grid
- 5 × 5 receiver grid
- Buoy separation = 15km
- 50 Minute Scenario
- 1 transmission/minute
- 600 Simulations

Analyse the performance of the scheduler as cost function varies

10 / 16

Analysis of Scheduler - Results

Figure: Performance of the scheduler shows the mean position and velocity error obtained using the different cost functions. The blue lines for target speed of 8 knots, and the red lines for a target speed of 14 knots

化压力 化压力

Analysis of Scheduler - Transmitter Choice

Figure: Transmitter histograms for the target's speed of 14 knots, showing the proportion of transmissions from each source when using the different cost functions.

Analysis of Scheduler - Waveform Choice

Figure: Choice of waveforms used when the target's speed is 8 and 14 knots

Gilliam et al.

Cost Functions for Scheduling Sonobuoy Fields

Analysis of Scheduler - Results

Conclusions

• Analysed scheduling of multistatic sonobuoy fields using cost functions based on the eigenvalues of the covariance estimate, $\mathbf{P}(a)$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_n$

1
$$\mathcal{J}_{\text{trace}}(a) = \text{trace } \mathbf{P}(a) = \sum_{n} \lambda_{n}$$

2 $\mathcal{J}_{\text{det}}(a) = \det \mathbf{P}(a) = \prod_{n} \lambda_{n}$
3 $\mathcal{J}_{\text{pres}}(a) = 1/ \operatorname{trace} \mathbf{P}(a)^{-1}$
4 $\mathcal{J}_{\max}(a) = \max_{n} \lambda_{n} = \lambda_{1}$
5 $\mathcal{J}_{\text{toint}}(a) = \lambda^{x} \lambda^{v}$

- Analysed proposed scheduling via optimum source-waveform action that minimized the covariance cost function.
 - Demonstrated trade-off between position and velocity accuracy varies
 - Trade-off characterised in terms of points on the Pareto front

うっつ 川田 マイビット 日 うらつ

The End

Thank you for listening Any Questions?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・