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Abstract—Sonobuoy fields, comprising a network of sonar
transmitters and receivers, are used to find and track underwater
targets. For a given environment and sonobuoy field layout, the
performance of such a field depends on the scheduling, that
is, deciding which source should transmit, and which waveform
should be transmitted at any given time. In this paper, we explore
the choice of cost function used in myopic scheduling and its effect
on tracking performance. Specifically, we consider 5 different cost
functions derived from the predicted error covariance matrix of
the track. Importantly, our cost functions combine both positional
and velocity covariance information to allow the scheduler to
choose the optimum source-waveform action. Using realistic
multistatic sonobuoy simulations, we demonstrate that each cost
function results in a different choice of source-waveform actions,
which in turn affects the performance of the scheduler. In
particular, we show there is a trade-off between position and
velocity error performance such that no one cost function is
superior in both.

Index Terms—Multistatic sonar; Sensor scheduling; Target
tracking

I. INTRODUCTION

A multistatic sonobuoy field comprises a network of trans-

mitters (sources) and receivers distributed across a large search

area. The principal task of such a network is to search for and

track underwater targets. The network operates by emitting an

acoustic signal, or “ping”, from a transmitter sonobuoy and

receiving the signal, possibly reflected from a target, at nearby

receivers. In our experiments, the ping can take the form

of Doppler insensitive frequency modulated (FM) waveforms

or Doppler sensitive continuous wave (CW) waveforms. FM

waveforms provide target range and bearing measurements

whereas CW waveforms provide target bearing, Doppler mea-

surements and coarse range measurements. By fusing these

measurements, the network of sensors is able to achieve

high target detection performance in challenging underwater

environments where the signal-to-noise ratio (SNR) of the

returned signal is typically low and clutter is significant. An

example of a sonobuoy field with 16 sources and 25 receivers

is shown in Fig. 1. The blue line represents the trajectory of

a target that the field must find and track.

Now, a key aspect in the performance of the sonobuoy field

is the decision on which transmitter in the field should ping.

This research was supported in part by Defence Science and Technology
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Fig. 1. Illustration of a multistatic sonobuoy field and a target. The crosses
are transmitter sonobuoys and the circles are receivers. The blue line indicates
the trajectory of the target and the square indicate its starting point.

The sequential order in which the sources in the network

transmit, and which waveform they use, is governed by a

central scheduler (i.e. sensor manager). Intelligent scheduling

with the aim of improving the performance of a multistatic

sonobuoy system was first proposed in [1]. The authors

developed a framework for greedy (or myopic) scheduling with

separate metrics for search and tracking. Since then significant

work has been undertaken to define new metrics and greedy

algorithms for scheduling. For example, search metrics based

on the probability of undetected targets in the field have been

investigated using diffusion concepts in [1], [2], Monto-Carlo

techniques in [3], [4], and extended to incorporate target track

information in [5]. Similarly, in terms of tracking, metrics

based on weighting the track information were proposed in

[6], and optimizing the expected number of target detections

in [7]. More recently, a multi-objective framework for myopic

scheduling was proposed in [8] whereby the search and track

tasks were treated as competing objectives. A block diagram

illustrating the role of the scheduler in a sonobuoy field is

shown in Fig. 2. Note that long term (non-myopic) scheduling

has also been investigated in [9]–[12].

In this paper, we examine the choice of tracking metrics

used to schedule a multistatic sonobuoy field. More specifi-

cally, we focus on myopic scheduling for high-quality target

tracking and explore cost functions based on the predicted



future covariance matrix for the tracker (also known as the

posterior Cramér-Rao bound [13]). The goal of our scheduler

is thus to ‘reduce’ the covariance matrix by minimizing the

cost functions. Such an approach has been used in sensor

management problems [14]–[16] and in optimal waveform

selection [17], [18]. These methods generally focus on using

the positional information of the target state and computing

the trace or determinant of the matrix [16]–[18], or they

compare the predicted matrix to a desired minimum allowable

covariance [14].

Instead, in this work, we consider the covariance matrix of

the whole target state, including both position and velocity

elements, and formulate 5 costs functions based on different

ways of measuring the size of the hyper-ellipsoid it represents.

In particular, along with the trace and determinant, we examine

the maximum variance (i.e. maximum eigenvalue), the average

precision (harmonic mean) and the joint maximum variance

in both position and velocity as cost functions for scheduling.

The advantage of using these functions is that they combine

position and velocity accuracy into a single cost, which allows

the scheduling to be posed as a single-objective minimization

problem. An alternative method, not explored in this paper,

would be to have separate cost functions for position and

velocity, and use multi-objective optimization. Thus, instead

of a single solution, there would be a frontier of solutions,

which are Pareto optimal, describing the trade-off between

position and velocity accuracy. Note that a similar approach

was explored in [8] for the trade-off between tracking known

targets and searching for unknown targets.

Using a realistic measurement simulation environment, we

demonstrate that the choice of cost function affects which

sources and waveforms are selected by the scheduler, which

affects the tracking performance. We show that the perfor-

mance of the cost functions are characterized by a trade-

off between position and velocity accuracy; one cannot be

improved without degrading the other. Thus, none of the cost

functions considered can be thought of as superior to the

others.

Note that the cost functions we discuss in this paper also

arise as criteria in the optimal design of experiments [19]. For

example, the trace, determinant and maximum variance costs

are referred to as A-optimality, D-optimality and E-optimality,

respectively.

The paper is organized as follows. In Section II, we re-

view the main elements required for tracking in multistatic

sonobuoy fields. In Section III, we present the framework

of our scheduler and introduce five possible covariance-based

cost functions that the scheduler can use when making its

decision. We then analyze the performance of these criteria

using simulations in Section IV. Finally we conclude in the

last section.

II. TRACKING IN MULTISTATIC SONOBUOY FIELDS

In this section, we review the main elements required to

track a target in the sonobuoy field. Specifically, we cover

the modelling of the sonobuoy field and targets; the type
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Fig. 2. Diagram illustrating the process of scheduling the multistatic sonobuoy
field for target tracking. At time k − 1, the tracker receives a set of
measurements, zk−1, obtained from the sonobuoy field and outputs an
estimate of the target’s state x̂k−1 and the associated error covariance Pk−1.
These quantities are then used by the scheduler to determine the next source
to transmit in the field and which waveform to emit. This source-waveform
pair, denoted a, results in the next set of measurements zk .

of measurements obtained from the receivers; the simulation

environment used to generate realistic sonobuoy datasets; and

the tracking algorithm.

A. Sonobuoy Field Geometry and Target Modelling

The multistatic sonobuoy field comprises a network of

Ns sources and Nr receivers, see Fig. 1 for an illustration.

The position of the jth source in the field is defined as

sj =
[

xj
s, y

j
s

]T

, where j = 1, . . . , Ns and the position of the

ith receiver is defined as ri =
[

xi
r, y

i
r

]T

, where i = 1, . . . , Nr.

These positions are assumed to be fixed for the duration of

the simulation. In practice, this assumption is unlikely to be

valid, due to effects such as ocean currents. However each

buoy contains RF communications and may contain GPS

equipment, so the position of the buoys can easily be tracked

and accounted for in a practical deployment.

An underwater target within the field is described using

the following time-varying state: xk = [pT

k,v
T

k]
T
, where

p = [xk, yk]
T

is the position of the target at time tk and

v = [ẋk, ẏk]
T

is its corresponding velocity. The motion of

a target is approximated using a noisy linear constant-velocity

model:

xk = f(xk−1) + ek =

([

1 T
0 1

]

⊗ I2

)

xk−1 + ek (1)

where T = tk−tk−1 is the sampling in time, ek is the process

noise, ⊗ is the Kronecker product and I2 is the 2× 2 identity

matrix. The process noise is Gaussian in nature and drawn

from N (0,Q), where the variance Q is defined as

Q = ω

[

T 3/3 T 2/2
T 2/2 T

]

⊗ I2

and ω is the intensity of the noise.

For this paper, we assume that the targets remain at a fixed

depth when moving. The exact value of this depth is unknown

to the tracker and scheduler; instead they are given knowledge

of a maximum, zmax, and minimum, zmin, depth in which a

target can occur.

B. Measurements Obtained from the Sonobuoy Field

Given the above geometric model, each source in the field

has the ability to emit one of Nw = 8 waveforms; it can choose

to emit either a FM or CW waveform, at a frequency of either

1kHz or 2kHz and with a transmission duration of either 2 or



8 seconds. When a source emits a waveform we obtain a set

of measurements Y
(i)
k collected by a subset of the receivers

i ∈ Ik, known as the proximal (or contributing) receivers.

These measurements may relate to an actual target within the

field or a phantom target created by a false detection.

Individually, a measurement y ∈ Y
(i)
k comprises the kine-

matic measurement z and the returned signal amplitude β
such that y = [β, zT]

T
. The components of the kinematic

measurement z depend upon the type of waveform emitted

by the source. If an FM waveform has been emitted, then z

contains the bistatic range – the range from the source to the

target to the receiver – and the angle from the receiver. In

contrast, if a CW waveform has been used then, in addition

to the bistatic range and the angle from the receiver, the

vector z also includes the bistatic range-rate. Accordingly, for

a waveform φ ∈ {CW,FM} and source j, we have:

z = h
(i)
j,φ(xk) +w

(i)
j,φ (2)

where h
(i)
j,FM(xk) =

[

h
(i)
j,ρ(xk), h

(i)
j,θ(xk)

]T

and h
(i)
j,CW(xk) =

[

h
(i)
j,ρ(xk), h

(i)
j,θ(xk), h

(i)
j,d(xk)

]T

. The individual components

are defined as

h
(i)
j,ρ(xk) = |pk − ri|+ |pk − sj |

h
(i)
j,θ(xk) = arctan

(

yk − yir
xk − xi

r

)

h
(i)
j,d(xk) =

vT

2

[

pk − ri

|pk − ri|
+

pk − si

|pk − si|

]

.

Lastly, w
(i)
j,φ is zero-mean Gaussian noise with a measurement

error covariance of R
(i)
j,φ.

C. Measurement Simulation Environment

To generate realistic multistatic sonobuoy measurements, we

use the Bistatic Range Independent Signal Excess (BRISE)

simulation environment described in [20]. In brief, the en-

vironment works as follows: the target detection process is

based on calculating a realization of the SNR for each target

at each receiver. This SNR calculation employs precomputed

signal excess component data, stored in look-up tables, that

depend on the configuration of the sources and receivers, the

waveform emitted and the target depth. Computation of the

signal excess component data is carried out offline using the

Gaussian ray bundle eigenray propagation model [21]. Using

this SNR value, BRISE then decides whether a detection

has occurred and, if so, it provides the measurement vector

z corrupted by additive Gaussian measurement noise (the

measurement covariances R
(i)
j,CW and R

(i)
j,FM of the noise are

set in BRISE). False alarms are also generated using a Poisson

distribution to determine the number of false detections and a

uniform distribution from which to draw the elements of the

measurement vector z. Along with measurements BRISE also

provides the probability of detection P i
d, which is dependent

upon the configuration of the sources and receivers, the

waveform emitted and the depth of the target. For a complete

review of the BRISE simulation environment see [7], [22].

D. Tracking Algorithm

Many algorithms have been proposed for tracking multiple

underwater targets using a multistatic sonar field, for example

see [23], [24]. In this paper, we opt for the robust multi-

target multi-sensor Bernoulli tracker recently proposed in

[22], [25]. The tracker combines the optimal Bayesian multi-

sensor filter for a single target in clutter, also known as the

multi-sensor Bernoulli filter [26]–[28], with the linear-multi-

target paradigm [29]. This tracker uses the signal amplitude

measurement associated with a detected target to discriminate

between false alarms and tracks. It is also capable of process-

ing measurements with different modalities (i.e. measurements

from CW and FM waveforms). The tracker is designed using

the Gaussian mixture model implementation outlined in [25].

In terms of the scheduling framework illustrated in Fig. 2,

we obtain from the tracker a series of τ confirmed tracks. Each

track comprises the current estimate of the target state x̂k, the

current error covariance Pτ
k of the track, and the probability

of existence for the track.

III. SONOBUOY SCHEDULING USING COVARIANCE-BASED

COST FUNCTIONS

At each transmission time, the scheduler must choose one

action a from the following action space

A = S ×W (3)

where S = {j1, . . . , jNs
} is the set of all sources, W =

{w1, . . . , wNw
} is the set of all waveforms and × represents

the Cartesian product of the two sets. To make this choice,

the scheduler requires a performance measure J to judge the

relative merit, in terms of tracking performance, of each action.

This measure acts as an objective function that can either

be maximized or minimized in regards to a. In this paper,

we propose the scheduling problem as a minimization of this

objective function as follows:

argmin
a

J (a). (4)

Accordingly, we refer to J (a) as the tracking cost function.

Thus the scheduler functions by calculating this tracking cost

for all actions in A and choosing the action with the smallest

cost.

The question is therefore what cost function J should we

use to ensure high quality tracking of a target? A suitable

answer, commonly used in sensor management problems [15]–

[17], is to formulate a cost based on the inverse of the filtering

information matrix of the future tracker states – the predicted

track error covariance matrix P̃. It is this option that we

shall now explore. Note that P̃ is also referred to as the

posterior1 Cramér-Rao bound [13], [15] or Bayesian Cramér-

Rao bound [30].

In the following, we shall use ∼ to indicate the predicted

value of a variable and ∧ to indicate its current estimated

value.

1The use of ‘posterior’ indicates that the noise covariance Q is used when
calculating the Cramér-Rao bound.



A. Predicted Track Error Covariance Matrix

The predicted track error covariance matrix P̃ encapsulates

how the error covariance of a track will be affected by both the

addition of new measurement data and the future movement

of the target. Specifically, measurements of the target should

reduce the covariance whereas the uncertainty due to target

movement has the opposite effect. Accordingly we use this

matrix to measure the benefit of each action in A.

To calculate this predicted covariance matrix, we use the

recursive method proposed by Tichavsky et al. [13] to estimate

the filtering information matrix and then take the inverse of

the result. For a complete derivation of this method see [13]

or, more recently, [31, Ch.4]. In this method the information

matrix comprises two parts: the prior information matrix Jp,

which describes the how the inverse of the current error

covariance Pk−1 propagates due to the motion model; and the

measurement information matrix Jm(a), which describes the

gain in information from an action. Accordingly, for an action

a ∈ A, the predicted error covariance matrix for a single track

at time k in the sonobuoy field is

P̃(a) =

[

Jp +
∑

i∈Ik(a)

J(i)
m (a)

]-1

(5)

where Ik(a) is the set of proximal receivers that will con-

tribute measurements if action a is taken and J
(i)
m (a) is the

corresponding measurement information matrix for the ith
receiver. The proximal set of receivers is defined geometrically

as the group of receivers within a circle centred at the

transmitting source with a radius twice that of the receiver-

source separation.

The prior information matrix is obtained as follows:

Jp =
[

Fk−1Pk−1F
T

k−1 +Q
]-1

(6)

where Pk−1 is the error covariance matrix for the track and

Fk−1 is the Jacobian of the function f(x) evaluated at x̂k−1,

i.e.

Fk−1 = ∇xf(x)|x=x̂k−1
.

Note that, based on the motion model in (1), Fk−1 is invariant

in both time and state space thus it is identical for all tracks.

Assuming x̃k is the predicted future state of the target

obtained from the motion model, the individual measurement

information matrices from each receiver are approximated as

J(i)
m (a) = P i

d(a)
[

Hi
k(a)

]T [

R(i)
a

]-1
Hi

k(a) (7)

where P i
d(a) is the expected probability that receiver i will

detect the target at x̃k and Hi
k(a) is the 3× 4 Jacobian of the

function h
(i)
a (x) evaluated at x̃k, i.e.

Hi
k(a) = ∇xh

(i)
a (x)

∣

∣

∣

x=x̃k

.

Note that we use action a to define both the source j and the

type of waveform φ it emits and, in the case of emitting a

FM waveform, the third row of the matrix will be all zeros.

For a discussion on the exact calculation of the individual

measurement information matrices from each receiver we refer

the reader to [32].

The expected probability of detection P i
d(a) is dependent

on the target depth, which is unknown to the scheduler. To

overcome this limitation, we use a conservative approach

whereby we consider several depths, uniformly spaced in

z ∈ [zmin, zmax], compute the probability of detection for each

depth and then use the minimum probability.

B. Measuring the Size of the Error Covariance

Having defined the predicted track error covariance above,

we now require a measure (or cost) that quantifies ‘the

size of’ this matrix. Our approach is to use the geometric

representation of P̃(a) – it represents an error hyper-ellipsoid

in the target state space. Thus, the size of the covariance P̃(a)
can be quantified by measuring the size of the hyper-ellipsoid.

Accordingly, the goal of the scheduler is to choose an action

a that corresponds to the smallest hyper-ellipsoid.

Now, how best to measure the size of a nD hyper-ellipsoid?

Assuming P̃(a) = P̃1(a)P̃
T

1(a) and that the eigenvalues of

P̃1(a) are λ1 ≥ λ2 . . . ≥ λn, then four possible options

were proposed in [33]. The first two options, commonly

used in sensor management [15], [16], are the trace and the

determinant. The trace of P̃1(a) is the sum of its eigenvalues,

which, in terms of geometry, represents the sum of the lengths

of the axes of the hyper-ellipsoid. Thus we have the trace cost

function:
Jtrace(a) = tr

(

P̃1(a)
)

=
∑

n

λn. (8)

This function equates to the arithmetic mean and measures
the average variance of the state estimation associated with

action a. In contrast, the determinant of P̃1(a) is the product

of the eigenvalues, which is proportional to the hyper-volume

of the ellipsoid. Thus our second cost function is:

Jdet(a) = det
(

P̃1(a)
)

=
∏

n

λn. (9)

This function equates to the geometric mean or generalized
variance associated with action a.

Next, the third measure from [33] is the average precision,

or harmonic mean, which equates to the following cost:

Jprec(a) = tr
(

P̃-1
1 (a)

)-1

=

(

∑

n

1

λn

)-1

. (10)

This cost is dominated by the value of the smallest eigenvalue
thus minimizing JPrec(a), w.r.t a, is approximately equivalent

to minimizing the smallest variance. In contrast, the fourth

cost function is the maximum eigenvalue, which equate to the

maximum length of the hyper-ellipsoid:

Jmax(a) = max
n

λn = λ1. (11)

Thus, minimizing Jmax(a) is equivalent to choosing an action
that minimizes the maximum variance in the state estimation.

In the following, we shall compare the performance of all

four of the cost functions. Furthermore, we introduce a fifth

cost that is similar to Jmax(a) but takes into account that P̃(a)



combines both position and velocity information. Specifically,

P̃(a) is a 4×4 matrix where two of its eigenvalues correspond

to positional information and the other two correspond to

velocity. Thus, our fifth cost is the product of the maximum

positional eigenvalue and the maximum velocity eigenvalue.

Accordingly, we have

JJoint(a) = λ1λ3, (12)

where we assume λ1 and λ2 correspond to position and the

other two eigenvalues correspond to velocity.

IV. SIMULATION RESULTS

To evaluate the different covariance cost functions, we

examine the performance of our scheduler when using each

measure in (4) on the tracking scenario illustrated in Fig. 1.

This scenario comprises a 4×4 grid of transmitter sonobuoys,

spaced 15 km apart, with a 5× 5 grid of receiver sonobuoys,

offset relative to the transmitters, and one target (in the

bottom right of the grid) to track. The scenario lasts for 40

minutes with a transmission every minute. The target follows

the constant velocity model defined in (1). The depth of

the target is drawn randomly for each simulation from a

uniform distribution ranging from a minimum depth of 10m

and maximum of 100m. To further explore the impact of

the measures, we compare the performance when the target

is moving at a speed of 8 knots to that obtained when the

target’s speed is 14 knots. Note that for each cost we perform

600 Monte-Carlo simulations and that the scheduler uses a

predefined sequence of actions, based on the search criteria in

[8], until the target has been found.

We use two metrics to assess the performance of the

scheduler when using each cost function: the position error and

the velocity error. The position error is the Euclidean distance

between positional components of the confirmed tracks and

the target. Similarly, the velocity error is the equivalent for the

velocity components. To avoid outliers caused by false tracks

skewing performance, we only consider position errors that are

less than 100m. Note that the choice of performance measures

used to evaluate estimation algorithms has been investigated

in [34], [35].

The performance results for the scheduler using each cost

function are shown in Fig. 3. Fig. 3(a) compares the mean

velocity error for each performance measure and Fig. 3(b)

shows the corresponding mean position errors. The perfor-

mance when the target is moving at 8 knots is indicated by

the blue ‘o’ markers, whereas the red ‘x’ markers indicate

the results when the target is moving at 14 knots. The error

bars on each graph represent the 5th and 95th quantiles for

the simulations. Note that the values shown in the graphs are

averaged over both the whole scenario time and the number

of Monte-Carlo simulations. The two metrics are then put

on a single scatter plot in Fig. 3(c). To accompany this

analysis, histograms of the waveforms transmitted during the

simulations are shown in Fig. 4. The figure shows how the

proportions of transmitted waveforms varies with the type of

performance measure used by the scheduler and the speed of

the target – Fig. 4(a) corresponds to a target speed of 8 knots

and Fig. 4(b) to a speed of 14 knots. Note that these figures

do not include the waveforms used when initially searching

for the target.

In terms of the overall performance of scheduler, the

figures demonstrate that using CW waveforms more often

improves the velocity accuracy of scheduler whereas using

FM waveforms more often improves positional accuracy. This

relationship is expected as CW waveforms return a Doppler

estimate (i.e. movement information about the target). Sim-

ilarly, increasing the target speed results in CW waveforms

being chosen more often; again this is to be expected as the

probability of detecting a target with CW increases with its

speed.

Now, in terms of cost function choice, the figures show that

the cost function has a clear effect on the type of waveform

chosen by the scheduler, which in turn affects its performance.

For example, regardless of target speed, when using Jprec as

a cost function the scheduler chooses CW waveforms 98% of

the time, which results in the smallest velocity error but the

largest positional error. In contrast, the opposite performance is

obtained when using either Jtrace or Jmax due to the scheduler

only selecting FM waveforms. Sitting in between these two

extremes are the Jdet and Jjoint cost functions. The histograms

in Fig. 4 show that both functions result in the scheduler

choosing a mixture of waveforms. For a target speed of

8 knots, the FM-CW mix is roughly 47%–53% using Jdet

and 69%–31% using Jjoint; the mixes for both costs change

to 18%–82% when the target is moving at 14 knots. The

greater use of CW by Jdet again results in a lower velocity

error compared to Jjoint at the expense of the positional error.

More precisely, for a target speed of 14 knots, Fig. 3(c) shows

that the joint position-velocity performance obtained using

each cost function is Pareto optimal [36], i.e. optimal in the

sense that a lower velocity error cannot be obtained without

degrading the position error and vice-versa. Similarly, for

the slower target speed of 8 knots, the joint position-velocity

performances of Jprec, Jdet, Jjoint and Jtrace are also Pareto

optimal. Accordingly, the choice of cost function is very

important to the scheduler as it controls the trade-off between

position and velocity error.

Finally, to complete this analysis, we include the histograms

of the sources selected to transmit during the simulations when

the target’s speed is 14 knots. These histograms are shown

in Fig. 5: Parts (a) to (e) show respectively the results for

Jprec, Jdet, Jjoint, Jtrace and Jmax. Similarly to the waveform

choice, each cost function chooses a slightly different mixture

of sources during the simulations. In particular, Jtrace and Jmax

make greater use of the source at location (2, 2) than the

other cost functions. Note that we exclude the corresponding

histograms for the slower target as the distance it travels during

the scenario is relatively small resulting in the cost functions

choosing very similar sources.



J
prec

J
det

J
joint

J
trace

J
max

Cost Functions

0

0.05

0.1

0.15

0.2

0.25

0.3

V
e

lo
ci

ty
 E

rr
o

r 
(m

/s
)

(a) Velocity Error (m/s)

J
prec

J
det

J
joint

J
trace

J
max

Cost Functions

0

20

40

60

80

P
o

si
ti

o
n

 E
rr

o
r 

(m
)

Target Speed = 8 knots

Target Speed = 14 knots

(b) Position Error (m)

0.04 0.06 0.08 0.1 0.12

Mean Velocity Error (m/s)

0

5

10

15

20

25

30

35

M
e

a
n

 P
o

si
ti

o
n

 E
rr

o
r 

(m
)

J
prec

J
det

J
joint J

trace

J
max

J
prec

J
det

J
joint

J
trace

J
max

Target Speed = 8 knots

Target Speed = 14 knots

(c) Position vs Velocity Error Plot

Fig. 3. Performance of the scheduler. Part (a) shows the mean velocity error obtained using the different cost functions, part (b) shows the mean position
error for the same costs and part (c) combines the means of both errors on a scatter. The blue lines (and ‘o’) indicate the performances when the target speed
is 8 knots, and the red lines (and ‘x’) correspond to when the target speed is 14 knots. The markers represent the mean values and the error bars indicate the
5th and 95th quantiles.
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Fig. 4. Waveform histograms for the scenario illustrated in Fig. 1. The histograms show the proportion of waveforms transmitted when using each cost
function to track the target. Part (a) shows the choice of waveforms used when the target’s speed is 8 knots and part (b) shows the corresponding choice when
the target’s speed is 14 knots.

V. CONCLUSIONS

In this paper, we have presented a study on the choice of

cost function when scheduling a multistatic sonobuoy field in

a myopic fashion. Specifically, we have explored the effect

of 5 different cost functions, derived from the predicted track

error covariance matrix, on the scheduling performance. Based

on interpreting the covariance as a hyper-ellipsoid, each cost

represented a different measure of the size of the hyper-

ellipsoid. Accordingly, the task of the scheduler is to decide the

optimum source-waveform action that minimized the covari-

ance cost function. Using a realistic measurement simulation

environment, we demonstrated that the cost function choice

affected the type of actions selected by the scheduler and thus

affected its tracking performance. In particular, cost functions
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(e) Using Jmax

Fig. 5. Transmitter histograms for the scenario illustrated in Fig. 1 when the target’s speed is 14 knots. The histograms show the proportion of transmissions
from each source when using the different cost functions. Note that each cell represents a transmitter in the field and the grid orientation corresponds to the
field geometry in Fig. 1.

that used more CW waveforms improved the scheduler’s

velocity estimation whereas use of FM waveforms improved

its position estimation. Importantly, we showed that no one

cost function is superior in terms of both position and velocity

accuracy – there is a trade-off between the two. In fact, with

only one exception, we found that the performance of our 5

cost functions in the position-velocity error space formed a set

of Pareto optimal points, i.e. improving the estimation of one

quantity degraded the estimation of the other. In future work,

we intend to explore adaptively switching the cost function

mid simulation in order to obtain the best of both worlds:

good positional estimation and good velocity estimation.
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