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a b s t r a c t 

The paper presents a cognitive strategy that enables an interconnected group of autonomous vehicles (moving 

robots) to search and localise a source of hazardous emissions (gas, biochemical particles) in a coordinated 

manner. Dispersion of the emitted substance is assumed to be affected by turbulence, resulting in the absence of 

concentration gradients. The key feature of the proposed search strategy is that it can be applied in a completely 

decentralised manner as long as the communication network of autonomous vehicles forms a connected graph. 

By decentralised operation we mean that each moving robot performs computations (i.e. source estimation and 

robot motion control) locally. Coordination is achieved by exchanging the data with the neighbours only, in a 

manner which does not require global knowledge of the communication network topology. 
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. Introduction 

The use of autonomous vehicles for environmental monitoring is of

reat importance, especially when it involves dangerous missions, such

s the search and localisation of toxic gas releases. Some recent sur-

eys containing a plethora of relevant references can be found in [1–

] . Practical implementation of miniature airborne platforms for gas

ensing tasks are explored in [4,5] . Existing theoretical approaches to

he problem of searching and localisation of emitting sources, can be

oosely divided into three categories: (i) up-flow motion methods, (ii)

oncentration gradient-based methods and (iii) information gain-based

ethods. The first category mimics the behaviour of bacteria and insects

n their search for food and mates. For example, upon sensing an odour

ignal, male moths surge upwind in the direction of the flow, but when

he odour information vanishes, they exhibit random cross-wind casting

r zigzagging until the plume is reacquired [6] . This class of methods

nspired robotic searches by various groups, e.g. [7–9] . 

Concentration gradient-based methods, also referred to as chemo-

axis , seek for the emitting source by following the positive local gra-

ient of the chemical concentration [10] . These strategies are effective

lose to the source where the odour plume can be considered as a con-

inuous field. Since the source is at the maximum of the concentration

eld, sometimes these methods are referred to as the extremum seeking

lgorithms [11–13] . 
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Both the up-flow motion methods and the concentration gradient

ethods are simple in that they require only a limited level of spa-

ial perception [14] . Their limitations manifest in the presence of tur-

ulent flows, due to the absence of concentration gradients, when the

lume typically consists of time-varying disconnected patches (the ef-

ect known as intermittency). The information gain-based methods, re-

erred to as infotaxis [15] , have been developed specifically for search-

ng in turbulent flows. In the absence of a smooth distribution of con-

entration (e.g. due to turbulence), this strategy directs the searching

obot(s) towards the highest information gain. As a theoretically prin-

ipled approach, where the source-parameter estimation is carried out

n the Bayesian framework and the searching platform motion control

s based on the information-theoretic principles, the infotaxic (or cogni-

ive) search strategies have attracted a great deal of interest [16–27] . 

This paper focuses on an infotaxic coordinated search by a group of

utonomous vehicles (platforms) for an emitting source of hazardous

ubstance dispersed by turbulent flow in open terrain environment. The

earch platforms are equipped with the appropriate sensors for sequen-

ial measuring of: (a) the pollutant concentration and (b) the platform

ocation. Due to the turbulent transport of the emitted substance, the

oncentration measurements are typically sporadic and fluctuating. The

earching platforms form a moving sensor network thus enabling the ex-

hange of data and a cooperative behaviour. The multi-robot infotaxis

ave already been studied in [16,22,24,28,29] . However, all mentioned
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eferences assumed all-to-all (i.e. fully connected) communication net-

ork with a centralised fusion and control of the searching group. 

In this paper we propose a fully decentralised infotaxic coordinated

earch. By decentralised operation we mean that each searching sensor

latform performs the computations (i.e. source estimation and platform

otion control) locally and independently of other platforms. Group

oordination for the sake of achieving the (common) task mission is

arried out by exchanging the data only with neighbours, in a manner

hich does not require global knowledge of the communication net-

ork topology. Hence, the proposed approach is scalable in the sense

hat the complexities for sensing, communication, and computing per

ensor platform are independent of the sensor network size. In addition,

ecause all sensor platforms are treated equally (no leader-follower hi-

rarchy), this approach is robust to the failure of any of the searching

gents. The only requirement for avoiding the break-up of the search-

ng formation is that the communication graph of the sensor network

emains connected at all times. Source parameter estimation is carried

ut sequentially, and on each platform independently, using a newly

eveloped Rao-Blackwellised particle filter. Platform motion control, in

he spirit of infotaxis , is based on entropy-reduction and is also carried

ut independently on every platform. The mathematical models of con-

entration measurements and platform motion are similar to those in

28] , which developed a search algorithm assuming the centralised ar-

hitecture and all-to-all communication network. In addition, the source

stimation algorithm in [28] was a batch algorithm - which would be

mpossible to use in a decentralised architecture. At the time of pub-

ication of this manuscript, another decentralised infotaxic search was

eported in [30] . 

The paper is organised as follows. Mathematical models are pre-

ented in Section 2 . The method for decentralised sequential estimation

f the source parameters is described in Section 3 . Next, decentralised

ormation control of the robotic platforms is explained in Section 4 . Our

roposed approach is then evaluated in Section 5 using simulated and

xperimental data. Finally, conclusions are drawn in Section 6 . 

. Mathematical models 

Search can be described as a repetitive cycle of sensing , estimation , de-

ision making for motion control and actuation (the execution of motion

ontrol). This section introduces the mathematical models of sensing, ve-

icle motion and communication, necessary for the autonomy enabling

unctions of estimation and motion control . 

.1. Measurement model 

We assume that each vehicle is equipped with a sensor for measur-

ng the concentration of the emitted substance. Let us adopt an open

eld terrain and a two-dimensional geometry, where the i th vehicle po-

ition at time t k is denoted by 𝐫 𝑖 
𝑘 
∈ ℝ 

2 . The concentration measurement

s modelled using a Lagrange encounters model developed in [15] . Sup-

ose that the emitting source is located at coordinates specified by the

ector 𝐫 0 = [ 𝑋 0 , 𝑌 0 ] ⊺ and its release rate, or strength, is Q 0 . The goal of

earch is to estimate the source parameter vector 𝜼0 = [ 𝐫 ⊺0 𝑄 0 ] ⊺ in the

hortest possible time. The particles released from the source propagate

ith combined molecular and turbulent isotropic diffusivity D , but can

lso be advected by wind. The released particles have an average life-

ime 𝜏 before being absorbed. Let the average wind characteristics be the

peed U and direction, which by convention, coincides with the direc-

ion of the x axis. Suppose a spherical concentration measuring sensor

f small radius a is mounted on the i th robot, whose position at time

 is 1 𝐫 𝑖 
𝑘 
= [ 𝑥 𝑖 

𝑘 
, 𝑦 𝑖 

𝑘 
] ⊺. This sensor will experience a series of encounters

ith the particles released from the emitting source. The average rate
1 Robot locations are assumed to be non-coincidental with the source location 

 0 . 

H  

t  

t  

14 
f encounters can be modelled as follows [15] : 

 ( 𝜼0 , 𝐫 𝑖 𝑘 ) = 

𝑄 0 

ln 
(

𝜆

𝑎 

) exp 

[ 

( 𝑋 0 − 𝑥 𝑖 
𝑘 
) 𝑈 

2 𝐷 

] 

⋅𝐾 0 

( 

𝑑 𝑖 
𝑘 
( 𝐫 0 , 𝐫 𝑖 𝑘 ) 
𝜆

) 

(1)

here D , 𝜏 and U are known environmental parameters, 

 

𝑖 
𝑘 
( 𝐫 0 , 𝐫 𝑖 𝑘 ) = 

√ 

( 𝑥 𝑖 
𝑘 
− 𝑋 0 ) 2 + ( 𝑦 𝑖 

𝑘 
− 𝑌 0 ) 2 (2)

s the distance between the source and the i th sensor platform, K 0 is the

odified Bessel function of the second kind of order zero, and 

= 

√ 

𝐷𝜏

1 + 

𝑈 2 𝜏
4 𝐷 

, (3)

epends on environmental parameters only. 

The stochastic process of sensor encounters with the dispersed parti-

les is modelled by a Poisson distribution. The probability that a sensor

t location 𝐫 𝑖 
𝑘 

encounters 𝑧 ∈ ℤ 

+ ∪ {0} particles ( z is a non-negative in-

eger) during a time interval t 0 is then: 

( 𝑧 ; 𝜇𝑖 
𝑘 
) = 

( 𝜇𝑖 
𝑘 
) 𝑧 

𝑧 ! 
𝑒 − 𝜇

𝑖 
𝑘 (4)

here 𝜇𝑖 
𝑘 
= 𝑡 0 ⋅ 𝑅 ( 𝜼0 , 𝐫 𝑖 𝑘 ) is the mean number of particles expected to

each the sensor at location 𝐫 𝑖 
𝑘 

during interval t 0 . The likelihood func-

ion of a concentration measurement 𝑧 𝑖 
𝑘 

collected by i th sensor is then

( 𝑧 𝑖 
𝑘 
|𝜼0 ) = ( 𝑧 𝑖 

𝑘 
; 𝜇𝑖 

𝑘 
) . 

.2. Motion model 

Let the pose vector of the i th robot platform ( 𝑖 = 1 , … , 𝑁) at time

 k be denoted 𝜽𝑖 
𝑘 
= [( 𝐫 𝑖 

𝑘 
) ⊺, 𝜙𝑖 

𝑘 
] ⊺, where 𝐫 𝑖 

𝑘 
= [ 𝑥 𝑖 

𝑘 
, 𝑦 𝑖 

𝑘 
] ⊺ has already been

ntroduced and 𝜙𝑖 
𝑘 

is the vehicle heading. The group of searching vehi-

les moves in a formation. The centroid of the formation at time t k is

pecified by coordinates: 

 

𝑐 
𝑘 
= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑥 𝑖 
𝑘 
, 𝑦 𝑐 

𝑘 
= 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑦 𝑖 
𝑘 
. (5)

or each platform 𝑖 = 1 , … , 𝑁, the offset ( Δx i , Δy i ) from the centroid

 𝑥 𝑐 
𝑘 
, 𝑦 𝑐 

𝑘 
) is predefined and known to it (i.e. 𝑥 𝑖 

𝑘 
= 𝑥 𝑐 

𝑘 
+ Δ𝑥 𝑖 , 𝑦 𝑖 𝑘 = 𝑦 𝑐 

𝑘 
+ Δ𝑦 𝑖 ).

The measurements of concentration are taken at time instants t k ,

 = 1 , 2 , …. Between two consecutive sensing instants, each platform is

oving. Let the duration of this interval (referred to as the travel time ) for

he i th platform be 𝑇 𝑖 
𝑘 
≥ 0 . The assumption is that sensing is suppressed

uring the travel time. 

Motion of the i th platform during interval 𝑇 𝑖 
𝑘 

is controlled by linear

elocity 𝑉 𝑖 
𝑘 

and angular velocity Ω𝑖 
𝑘 
. Given that the motion control vec-

or 𝐮 𝑖 
𝑘 
= [ 𝑉 𝑖 

𝑘 
, Ω𝑖 

𝑘 
, 𝑇 𝑖 

𝑘 
] ⊺ is applied to the i th platform, its dynamics during a

hort integration time interval 𝛿 ≪ 𝑇 𝑖 
𝑘 

can be modelled by a Markov pro-

ess whose transitional density is 𝜋( 𝜽𝑖 𝑡 |𝜽𝑖 𝑡 − 𝛿, 𝐮 𝑖 𝑘 ) =  ( 𝜽𝑖 𝑡 ; 𝛽( 𝜽
𝑖 
𝑡 − 𝛿, 𝐮 

𝑖 
𝑘 
) , 𝐐 ) .

he process noise covariance matrix Q captures the uncertainty in mo-

ion due to the unforseen disturbances. The vehicle motion function

( 𝜽𝑖 
𝑡 − 𝛿, 𝐮 

𝑖 
𝑘 
) is: 

( 𝜽𝑖 
𝑡 − 𝛿, 𝐮 

𝑖 
𝑘 
) = 𝜽𝑖 

𝑡 − 𝛿 + 𝛿

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑉 𝑖 
𝑘 
cos ( 𝜙𝑖 

𝑘 −1 ) 

𝑉 𝑖 
𝑘 
sin ( 𝜙𝑖 

𝑘 −1 ) 

Ω𝑖 
𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ + 𝐁 

𝑖 
𝑘 −1 , (6)

here vector 𝐁 

𝑖 
𝑘 −1 = 

[
𝜖𝑖 𝑥 

𝛿

𝑇 𝑖 
𝑘 

𝜖𝑖 𝑦 
𝛿

𝑇 𝑖 
𝑘 

0 
]⊺

is introduced to compensate

or a distortion of the formation due to process noise with parameters: 

𝑖 
𝑥 = �̄� 𝑖 

𝑘 −1 − ( 𝑥 𝑖 
𝑘 −1 − Δ𝑥 𝑖 ) 

𝜖𝑖 𝑦 = �̄� 𝑖 
𝑘 −1 − ( 𝑦 𝑖 

𝑘 −1 − Δ𝑥 𝑖 ) . 

ere �̄� 𝑖 
𝑘 −1 and �̄� 𝑖 

𝑘 −1 are the estimates of the coordinates of the forma-

ion centroid at 𝑘 − 1 (that is of 𝑥 𝑐 
𝑘 −1 and 𝑦 𝑐 

𝑘 −1 , respectively) available

o the i th platform. Coordinates 𝑥 𝑖 
𝑘 −1 and 𝑦 𝑖 

𝑘 −1 refer to the known i th
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Fig. 1. An example of a path of a formation of 𝑁 = 7 searching platforms at 

𝑘 = 1 , 2 , 3 . The communication graphs (based on established links between the 

platforms) are indicated with green lines. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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ehicle position at 𝑘 − 1 . Fig. 1 illustrates the trajectories of 𝑁 = 7 au-

onomous vehicles in a formation using the described transitional den-

ity 𝜋( 𝜽𝑖 𝑡 |𝜽𝑖 𝑡 − 𝛿, 𝐮 𝑖 𝑘 ) . 
In the absence of process noise (i.e. 𝐐 = 0 ), the vehicles would move

n a perfect formation if (a) all control vectors are identical (i.e. 𝐮 1 
𝑘 
=

 

2 
𝑘 
= … = 𝐮 𝑁 

𝑘 
), and (b) all headings are identical (i.e. 𝜙1 

𝑘 −1 = 𝜙2 
𝑘 −1 = … =

𝑖 
𝑘 −1 ). In this case each platform would know the true coordinates of the

ormation centroid (i.e. �̄� 𝑖 
𝑘 
= 𝑥 𝑐 

𝑘 
, �̄� 𝑖 

𝑘 
= 𝑦 𝑐 

𝑘 
, for 𝑖 = 1 , … , 𝑁) and hence the

orrection vectors 𝐁 

𝑖 
𝑘 −1 would be zero. 

.3. Communication model 

Let us assume that a vehicle can communicate with another vehicle

n the formation if their mutual distance is smaller than R max . Because

f process noise, the distance between the vehicles in the formation will

ary and hence the topology of the communication network graph can

lso vary. For simplicity we will assume that communication links (when

stablished) are error free. Fig. 1 illustrates the communication graphs

f a formation of platforms at three consecutive time instants. All three

ommunication graphs are connected 2 , although the topology is time-

arying. 

. Decentralised sequential estimation 

We adopt the measurement dissemination based decentralised archi-

ecture [31] , where the measurement locations 3 and the corresponding

easured concentration values, i.e. the measurement trios ( 𝑥 𝑖 
𝑘 
, 𝑦 𝑖 

𝑘 
, 𝑧 𝑖 

𝑘 
) ,

re exchanged via the communication network. The protocol is iter-

tive. In the first iteration, platform i broadcasts its trio to its neigh-

ours and receives from them their measurement trios. In the second,

hird and all subsequent iteration, platform i broadcasts its newly ac-

uired trios to the neighbours, and accepts from them only the trios

hat this platform has not seen before (newly acquired). Providing that
2 A communication graph is connected if there exists at least one path between 

ny two nodes in the graph [31] . 
3 Because the measurement locations are assumed to be known exactly, they 

ill not be treated as random variables. 

𝑝  

w  

t  

𝑔  

15 
he communication graph is connected, after a sufficient number of iter-

tions (which depends on the topology of the graph), a complete list of

easurement trios (data) from all platforms in the formation, denoted

 𝑘 = {( 𝑥 𝑖 
𝑘 
, 𝑦 𝑖 

𝑘 
, 𝑧 𝑖 

𝑘 
)} 1 ≤ 𝑖 ≤ 𝑁 

, will be available at each platform. 

Suppose the posterior density function of the source at discrete-

ime 𝑘 − 1 and platform i be denoted 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) , where  1∶ 𝑘 −1 ≡
 1 ,  2 , … ,  𝑘 −1 . Given 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) and a new dataset  𝑘 , the prob-

em of sequential estimation is to compute the posterior at time k , i.e.

 𝑖 ( 𝜼0 | 1∶ 𝑘 ) . Using the Bayes rule, the posterior is 

 𝑖 ( 𝜼0 | 1∶ 𝑘 ) = 

𝑔(  𝑘 |𝜼0 ) 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) 
∫ 𝑔(  𝑘 |𝜼0 ) 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) 𝑑 𝜼0 

(7)

here 𝑔(  𝑘 |𝜼0 ) is the likelihood function. Assuming that individual plat-

orm measurements are conditionally independent, 𝑔(  𝑘 |𝜼0 ) can be ex-

ressed as 

(  𝑘 |𝜼0 ) = 

𝑁 ∏
𝑖 =1 

𝓁( 𝑧 𝑖 
𝑘 
|𝜼0 ) = 

𝑁 ∏
𝑖 =1 

 

(
𝑧 𝑖 
𝑘 
; 𝑄 0 𝜌( 𝐫 0 , 𝐫 𝑖 𝑘 ) 

)
(8)

here 

( 𝐫 0 , 𝐫 𝑖 𝑘 ) = 𝑡 0 𝑅 ( 𝜼0 , 𝐫 𝑖 𝑘 )∕ 𝑄 0 (9) 

= 

𝑡 0 

ln 
(

𝜆

𝑎 

) exp 

[ 

( 𝑋 0 − 𝑥 𝑖 
𝑘 
) 𝑈 

2 𝐷 

] 

⋅𝐾 0 

( 

𝑑 𝑖 
𝑘 
( 𝐫 0 , 𝐫 𝑖 𝑘 ) 
𝜆

) 

(10) 

s independent of Q 0 . 

We will compute the posterior density 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 ) using the Rao-

lackwell dimension reduction scheme [32] . Using the chain rule, the

osterior can be expressed as: 

 𝑖 ( 𝜼0 | 1∶ 𝑘 ) = 𝑝 𝑖 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) ⋅ 𝑝 𝑖 ( 𝐫 0 | 1∶ 𝑘 ) (11) 

here the posterior of source strength 𝑝 𝑖 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) will be worked

ut analytically, while the posterior of source position 𝑝 𝑖 ( 𝐫 0 | 1∶ 𝑘 ) will

e computed a using a particle filter. 

Following [33] , we express the posterior 𝑝 𝑖 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) with the

amma distribution whose shape and scale parameters are 𝜅𝑘 −1 and

 𝑘 −1 , respectively. That is 

 𝑖 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) =  ( 𝑄 0 ; 𝜅𝑘 −1 , 𝜗 𝑘 −1 ) 

= 

𝑄 

( 𝜅𝑘 −1 −1) 
0 𝑒 − 𝑄 0 ∕ 𝜗 𝑘 −1 

𝜗 
𝜅𝑘 −1 
𝑘 −1 Γ( 𝜅𝑘 −1 ) 

. (12) 

ince the conjugate prior of the Poisson distribution is the Gamma dis-

ribution [34] , the posterior 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) is also a Gamma distribution

ith updated parameters 𝜅k and ϑk , i.e. 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) =  ( 𝑄 0 ; 𝜅𝑘 , 𝜗 𝑘 ) .
he computation of 𝜅k and ϑk can be carried out analytically as a func-

ion of r 0 and the measurement set  𝑘 = {( 𝐫 𝑖 
𝑘 
, 𝑧 𝑖 

𝑘 
)} 1 ≤ 𝑖 ≤ 𝑁 

[33] : 

𝑘 = 𝜅𝑘 −1 + 

𝑁 ∑
𝑖 =1 

𝑧 𝑖 
𝑘 
, (13)

 𝑘 = 

𝜗 𝑘 −1 

1 + 𝜗 𝑘 −1 
∑𝑁 

𝑖 =1 𝜌( 𝐫 0 , 𝐫 
𝑖 
𝑘 
) 
. (14)

he parameters of the prior for source strength, 𝑝 ( 𝑄 0 ) =  ( 𝜅0 , 𝜗 0 ) are

hosen so that this density covers a large span of possible values of Q 0 .

Next we turn our attention to the posterior of source position

 𝑖 ( 𝐫 0 | 1∶ 𝑘 ) in the factorised form (11) . Given 𝑝 ( 𝐫 0 | 1∶ 𝑘 −1 ) , the update

tep of the particle filter using  𝑘 applies the Bayes rule: 

 ( 𝐫 0 | 1∶ 𝑘 ) = 

𝑔(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) 𝑝 ( 𝐫 0 | 1∶ 𝑘 −1 ) 
𝑓 (  𝑘 | 1∶ 𝑘 −1 ) 

(15)

here 𝑓 (  𝑘 | 1∶ 𝑘 −1 ) = ∫ 𝑔(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) 𝑝 ( 𝐫 0 | 1∶ 𝑘 −1 ) 𝑑𝐫 0 is a normalisa-

ion constant. The problem in using (15) is that the likelihood function

(  |𝐫 ,  ) is unknown; only 𝑔(  |𝜼 ) of (8) is known. Fortunately,
𝑘 0 1∶ 𝑘 −1 𝑘 0 
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t is possible to derive an analytic expression for 𝑔(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) (see

ppendix ): 

(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) = 

𝜗 
𝜅𝑘 
𝑘 

Γ( 𝜅𝑘 ) 

𝜗 
𝜅𝑘 −1 
𝑘 −1 Γ( 𝜅𝑘 −1 ) 

𝑁 ∏
𝑖 =1 

𝜌( 𝐫 0 , 𝐫 𝑖 𝑘 ) 
𝑧 𝑖 
𝑘 

𝑧 𝑖 
𝑘 
! 

(16)

The Rao-Blackwellised particle filter (RBPF) fully describes the pos-

erior 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 ) by a particle system 

 

𝑖 
𝑘 
≡ { 𝑤 

𝑚,𝑖 
𝑘 

, 𝐫 𝑚,𝑖 0 ,𝑘 , 𝜅
𝑖 
𝑘 
, 𝜗 𝑚,𝑖 

𝑘 
} 1 ≤ 𝑚 ≤ 𝑀 

. 

ere M is the number of particles, 𝑤 

𝑚,𝑖 
𝑘 

is a (normalised) weight as-

ociated with the source position sample 𝐫 𝑚,𝑖 0 ,𝑘 , while 𝜅𝑖 
𝑘 

and 𝜗 𝑚,𝑖 
𝑘 

are

he parameters of the corresponding Gamma distribution for the source

trength. Initially, at time 𝑘 = 0 , the weights are uniform (and equal to

/ M ), { 𝐫 𝑚,𝑖 
𝑘, 0 } are the points on a regular grid covering a specified search

rea, while 𝜅𝑖 
0 = 𝜅0 and 𝜗 𝑚,𝑖 0 = 𝜗 0 . 

Sequential computation of the posterior 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 ) using the RBPF

s carried out by a recursive update of the particle system  𝑖 
𝑘 

over time.

hile the steps of a single cycle of the RBPF presented in Algorithm 1 are

lgorithm 1 A single cycle of the RBPF on platform i . 

1: Inputs: 

2: ∙  𝑖 
𝑘 −1 ≡ { 𝑤 

𝑚,𝑖 
𝑘 −1 , 𝐫 

𝑚,𝑖 
0 , 𝑘 −1 , 𝜅

𝑖 
𝑘 −1 , 𝜗 

𝑚,𝑖 
𝑘 −1 } 1 ≤ 𝑚 ≤ 𝑀 

, 

3: ∙  𝑘 = {( 𝑥 𝑖 
𝑘 
, 𝑦 𝑖 

𝑘 
, 𝑧 𝑖 

𝑘 
)} 1 ≤ 𝑖 ≤ 𝑁 

4: Compute 𝜅𝑖 
𝑘 

using (13) 

5: for 𝑚 = 1 , … , 𝑀 do 

6: Compute 𝜗 𝑚,𝑖 
𝑘 

using (14) and 𝐫 𝑚,𝑖 0 ,𝑘 −1 
7: Compute 𝑔(  𝑘 |𝐫 𝑚,𝑖 0 ,𝑘 −1 ,  1∶ 𝑘 −1 ) using (16) and 𝜗 𝑚,𝑖 

𝑘 

8: Update weight: �̃� 

𝑚,𝑖 
𝑘 

= 𝑤 

𝑚,𝑖 
𝑘 −1 ⋅ 𝑔(  𝑘 |𝐫 𝑚,𝑖 0 ,𝑘 −1 ,  1∶ 𝑘 −1 ) 

9: end for 

10: Norm. 𝑤 

𝑚,𝑖 
𝑘 

= �̃� 

𝑚,𝑖 
𝑘 

∕ 
∑𝑀 

𝑚 =1 �̃� 

𝑚,𝑖 
𝑘 

, for 𝑚 = 1 , … , 𝑀 

11: Compute 𝑀 eff = 

(∑𝑀 

𝑚 =1 ( 𝑤 

𝑚,𝑖 
𝑘 

) 2 
)−1 

12: for 𝑚 = 1 , … , 𝑀 do 

13: if 𝑀 eff < 𝑀∕2 then 

14: Draw 𝑗 𝑚 ∈ {1 , …, 𝑀} based on { 𝑤 

𝑚,𝑖 
𝑘 

} 
15: 𝑤 

𝑚,𝑖 
𝑘 

= 1∕ 𝑀 

16: 𝐫 𝑚,𝑖 0 ,𝑘 ← 𝐫 𝑗 𝑚 ,𝑖 0 , 𝑘 −1 + 𝜀 𝑚 

17: Recompute 𝜗 𝑚,𝑖 
𝑘 

using (14) and 𝐫 𝑚,𝑖 0 ,𝑘 
18: else 

19: 𝐫 𝑚,𝑖 0 ,𝑘 ← 𝐫 𝑚,𝑖 0 , 𝑘 −1 
20: end if 

21: end for 

22: Output:  𝑖 
𝑘 
≡ { 𝑤 

𝑚,𝑖 
𝑘 

, 𝐫 𝑚,𝑖 0 ,𝑘 , 𝜅
𝑖 
𝑘 
, 𝜗 𝑚,𝑖 

𝑘 
} 1 ≤ 𝑚 ≤ 𝑀 

elf explanatory, we only point out that Lines 14–17 perform resampling

f particles. In order to diversify particles, a small jitter 𝜀 m 

is introduced

n Line 16 to the positional particles. 

. Decentralised formation control 

In decentralised multi-robot search, each platform autonomously

akes a decision at time 𝑡 𝑘 −1 about its next control vector (or action)

 

𝑖 
𝑘 
. Selection of individual actions will be discussed in Section 4.1 . Al-

hough the same RBPF code is meant to be executed in parallel on every

latform, even if the same dataset  1∶ 𝑘 is available to all of them, the

article systems on individual platforms  𝑖 
𝑘 
, 𝑖 = 1 , … , 𝑁, may not be the

ame, because the local pseudo-number generators (used by particle fil-

ers) could be different. As a result, in general, actions { 𝐮 𝑖 
𝑘 
} 1 ≤ 𝑖 ≤ 𝑁 

can

e different. There is a need, therefore, to impose some form of coor-

ination between the platforms in order to collectively maintain a pre-

cribed geometric shape of the multi-platform formation and thus avoid

ts break-up. Coordination will be discussed in Section. 4.2 . 
16 
.1. Selection of individual control vectors 

Platform 𝑖 = 1 , … , 𝑁 autonomously decides on 𝐮 𝑖 
𝑘 

using the infotaxis

trategy [15] , which can be formulated as a partially observed Markov

ecision process (POMDP) [35] . The elements of POMDP are (i) the in-

ormation state, (ii) the set of admissible actions and (iii) the reward

unction. The information state at time 𝑡 𝑘 −1 is the posterior density

 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) ; it accurately specifies the i th platform current knowledge

bout the source position and its release-rate. Admissible actions can be

ormed with one or multiple steps ahead. A decision in the context of

earch is the selection of a control vector 𝐮 𝑖 
𝑘 
∈  which will maximise

he reward function. According to Section. 2.2 , the space of admissi-

le actions  is continuous with dimensions: linear velocity V , angular

elocity Ω and duration of motion T . In order to reduce the computa-

ional complexity of numerical optimisation,  is adopted as a discrete

et with only myopic (one step ahead) controls. In addition,  is time-

nvariant and identical for all platforms. If 𝕍 , 𝕆 and 𝕋 denote the sets

f possible discrete-values of V , Ω and T , respectively, then  is the

artesian product 𝕍 ×𝕆 × 𝕋 . The myopic selection of the control vector

t time t k on platform i is expressed as: 

 

𝑖 
𝑘 
= arg max 

𝐯 ∈ 𝔼 
{ 

[
𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) , 𝑧 𝑖 𝑘 ( 𝐯 ) 

]}
(17)

here  is the reward function and 𝑧 𝑖 
𝑘 

is the future concentration mea-

urement collected by the i th platform if the platform moved under the

ontrol 𝐯 ∈  to position ( 𝑥 𝑖 
𝑘 
, 𝑦 𝑖 

𝑘 
) . In reality, this future measurement is

ot available (the decision has to be made at time 𝑡 𝑘 −1 ), and therefore

he expectation operator 𝔼 with respect to the prior measurement PDF

eatures in (17) . 

Previous studies of search strategies [16,23] found that the reward

unction defined as the entropy reduction , results in the most efficient

earch. Hence we adopt the expected reward defined as 

 𝑖 = 𝔼 
{ 

[
𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) , 𝑧 𝑖 𝑘 ( 𝐯 ) 

]}
= 𝐻 

𝑖 
𝑘 −1 − 𝔼 { 𝐻 

𝑖 
𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
} (18) 

here 𝐻 𝑘 −1 is the current differential entropy, defined as 

 

𝑖 
𝑘 −1 = − ∫ 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) ln 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) 𝑑 𝜼0 , (19)

hile 𝐻 

𝑖 
𝑘 
( 𝑧 𝑖 

𝑘 
( 𝐯 )) ≤ 𝐻 𝑘 −1 is the future differential entropy (after a hypo-

hetical control vector v has been applied to collect 𝑧 𝑖 
𝑘 
): 

 

𝑖 
𝑘 
( 𝑧 𝑖 

𝑘 
( 𝐯 )) = − ∫ 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ,  

𝑖 
𝑘 
( 𝐯 )) ln 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ,  

𝑖 
𝑘 
( 𝐯 )) 𝑑 𝜼0 , (20)

here  

𝑖 
𝑘 
= ( 𝑥 𝑖 

𝑘 
, 𝑦 𝑖 

𝑘 
, 𝑧 𝑖 

𝑘 
) . The expectation operator 𝔼 in (18) is

ith respect to the probability mass function 𝑃 { 𝑧 𝑖 
𝑘 
| 1∶ 𝑘 −1 } =

𝓁( 𝑧 𝑖 
𝑘 
|𝜼0 ) 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) 𝑑 𝜼0 , that is: 

 { 𝐻 

𝑖 
𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
} = 

∑
𝑧 𝑖 
𝑘 

𝑃 { 𝑧 𝑖 
𝑘 
| 1∶ 𝑘 −1 } ⋅𝐻 𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
. (21)

Given that 𝑝 𝑖 ( 𝜼0 | 1∶ 𝑘 −1 ) is approximated by a particle system  𝑖 
𝑘 −1 ,

ne can approximately compute 𝐻 

𝑖 
𝑘 −1 , which features in (18) , as 

 

𝑖 
𝑘 −1 ≈ − 

𝑀 ∑
𝑚 =1 

𝑤 

𝑚,𝑖 
𝑘 −1 ln 𝑤 

𝑚,𝑖 
𝑘 −1 . (22)

n order to compute 𝔼 { 𝐻 

𝑖 
𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
} of (21) , first note that 𝑃 { 𝑧 𝑖 

𝑘 
| 1∶ 𝑘 −1 } =

( 𝑧 𝑖 
𝑘 
; ̂𝜇𝑖 

𝑘 −1 ) , where 𝜇𝑖 
𝑘 −1 is the predicted mean rate of chemical particle

ncounters at location 𝐫 𝑖 
𝑘 

(where the platform i would move after apply-

ng a hypothetical control v ), computed based on  1∶ 𝑘 −1 . According to

ection 2.1 , 

̂𝑖 
𝑘 −1 ≈

𝑀 ∑
𝑚 =1 

𝑤 

𝑚,𝑖 
𝑘 −1 𝜅

𝑖 
𝑘 −1 𝜗 

𝑚,𝑖 
𝑘 −1 𝜌( 𝐫 

𝑚,𝑖 
0 ,𝑘 −1 , 𝐫 

𝑖 
𝑘 
) (23)

here the product 𝜅𝑖 
𝑘 −1 𝜗 

𝑚,𝑖 
𝑘 −1 approximates the source release rate as the

ean of the Gamma distribution with parameters ( 𝜅𝑖 
𝑘 −1 , 𝜗 

𝑚,𝑖 
𝑘 −1 ) . Next we
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albeit by a smaller formation in possibly longer interval of time. 
nd the value of z max as the minimum value of z ′ such that the cu-

ulative distribution function 
∑𝑧 ′

𝑧 =0 ( 𝑧 ; ̂𝜇𝑖 
𝑘 −1 ) is greater than a certain

hreshold 1 − 𝜖, where 𝜖 ≪ 1. The summation (21) is then computed only

or 𝑧 𝑖 
𝑘 
= 0 , 1 , … , 𝑧 max . Computation of 𝐻 𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
is carried out accord-

ng to (22) , except that 𝑤 

𝑚,𝑖 
𝑘 −1 is replaced with 𝑤 

𝑚,𝑖 
𝑘 

= 𝑤 

𝑚,𝑖 
𝑘 −1 ⋅ ( 𝑧 𝑖 

𝑘 
; 𝜇𝑚,𝑖 

𝑘 −1 )
here 

𝑚,𝑖 
𝑘 −1 = 𝜅𝑖 

𝑘 −1 𝜗 
𝑚,𝑖 
𝑘 −1 𝜌( 𝐫 

𝑚,𝑖 
0 ,𝑘 −1 , 𝐫 

𝑖 
𝑘 
) . 

hus (21) is approximated with 

 { 𝐻 

𝑖 
𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
} ≈

𝑧 max ∑
𝑧 =0 

( 𝑧 ; ̂𝜇𝑖 
𝑘 −1 ) 

[ 

− 

𝑀 ∑
𝑚 =1 

𝑤 

𝑚,𝑖 
𝑘 

ln 𝑤 

𝑚,𝑖 
𝑘 

] 

(24)

seudo-code of the routine for the computation of control vector on

latform i is given by Algorithm 2 . 

lgorithm 2 Computation of 𝐮 𝑖 
𝑘 
. 

1: Input:  𝑖 
𝑘 −1 ≡ { 𝑤 

𝑚,𝑖 
𝑘 −1 , 𝐫 

𝑚,𝑖 
0 , 𝑘 −1 , 𝜅

𝑖 
𝑘 −1 , 𝜗 

𝑚,𝑖 
𝑘 −1 } 1 ≤ 𝑚 ≤ 𝑀 

, 

2: Compute 𝐻 𝑘 −1 using (22) 

3: Create admissible set  = 𝕍 ×𝕆 × 𝕋 
4: for every 𝐯 ∈  do 

5: Compute the future platform location 𝐫 𝑖 
𝑘 
( 𝐯 ) using (6) with 𝐁 

𝑖 
𝑘 −1 = 0

6: Compute 𝜇𝑖 
𝑘 −1 using (23) 

7: Determine 𝑧 max s.t. 
∑𝑧 max 

𝑧 =0 ( 𝑧 ; ̂𝜇𝑖 
𝑘 −1 ) > 1 − 𝜖

8: Compute 𝔼 { 𝐻 

𝑖 
𝑘 

(
𝑧 𝑖 
𝑘 
( 𝐯 ) 

)
} using (24) 

9: Calculate the expected reward  𝑖 using (18) 

10: end for 

11: Find 𝐮 𝑖 
𝑘 

using (17) 

12: Output: 𝐮 𝑖 
𝑘 

.2. Cooperative control through consensus 

So far we have explained how platform i would independently of

he other platforms in the formation determine the best action for it-

elf, i.e. 𝐮 𝑖 
𝑘 
. In general, individual platforms may disagree on the best

ction, and in the extreme 𝐮 1 
𝑘 
≠ 𝐮 2 

𝑘 
≠ … , ≠ 𝐮 𝑁 

𝑘 
. This disagreement is un-

esirable because it can lead to the break-up of the multi-platform for-

ation. The break-up can have detrimental effects for two reasons: it

an cause some platforms to crash into each other, and it can cause the

oss of connectivity in the communication graph. Initially, at 𝑘 = 0 , the

ormation is created in such a manner that its communication graph is

onnected. The goal of cooperative control is to maintain the shape of

he formation during the mission and thereby keep the communication

raph connected. For this to be achieved, during each motion period

from time 𝑡 𝑘 −1 to t k ), the platforms need to reach an agreement on the

ommon action u k to be applied to all of them. But this is not sufficient -

ccording to the motion model in Section 2.2 , the platforms also need to

ompute the formation centroid coordinates and agree on the common

eading angle 𝜙𝑘 −1 to be applied in (6) . 

We apply decentralised cooperative control based on the average

onsensus [36,37] in order to achieve this goal. In a network of col-

aborating agents, consensus is an iterative protocol designed to reach

n agreement regarding a certain quantity of interest, by computing its

lobal mean value via local computations. Suppose that every platform,

s a node in the communication network, initially has an individual

calar value. The goal of average consensus is for every node in the net-

ork to compute the average of initial scalar values, in a completely

ecentralised manner: by communicating only with the neighbours in

he communication graph (without knowing the topology of the commu-

ication graph). In our case, there is not only a single individual scalar

alue, but six of them. They include three motion control parameters,

.e. for platform i , 𝑉 𝑖 
𝑘 
, Ω𝑖 

𝑘 
and 𝑇 𝑖 

𝑘 
, two formation centroid coordinates,

.e. �̄� 𝑖 
𝑘 −1 , �̄� 

𝑖 
𝑘 −1 and the heading angle of each platform 𝜙𝑖 

𝑘 −1 . 
17 
Let us denote the scalar value of interest by b i , that is 

 𝑖 ∈ { 𝑉 𝑖 
𝑘 
, Ω𝑖 

𝑘 
, 𝑇 𝑖 

𝑘 
, ̄𝑥 𝑖 

𝑘 −1 , ̄𝑦 
𝑖 
𝑘 −1 , 𝜙

𝑖 
𝑘 −1 } . 

deally we want every platform in the formation to compute the mean

alue ̄𝑏 = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑏 𝑖 . If all platforms in the formation were to use identi-

al average values for motion control, centroid coordinates and heading,

hen their motion would be coordinated (except for process noise, which

ill be taken care of through vector 𝐁 

𝑖 
𝑘 −1 in (6) ) and the shape of the

ormation would be maintained (provided R max is adequate). 

Average consensus is an iterative algorithm. At iteration 𝑠 = 0 , the

ode in the communication graph (the robot platform) will initialise

ts state b i (0) using either a component of vector 𝐮 𝑖 
𝑘 

(if b i is a motion

ontrol parameter) or the platform pose 𝜽𝑖 
𝑘 −1 (if b i is a formation centroid

oordinate or heading angle). This value is locally available. The initial

alues of centroid coordinates are the actual i th platform coordinates,

.e. �̄� 𝑖 
𝑘 −1 (0) = 𝑥 𝑖 

𝑘 −1 and �̄� 𝑖 
𝑘 −1 (0) = 𝑦 𝑖 

𝑘 −1 . At each following iteration 𝑠 =
 , 2 , … , each platform updates its state with a linear combination of its

wn state and the states of its current neighbours. Let us denote the set

f current neighbours of platform i by  𝑖 . Then [36] : 

 𝑖 ( 𝑠 ) = 

( 

1 − 

| 𝑖 |
𝑁 

) 

𝑏 𝑖 ( 𝑠 − 1) + 

1 
𝑁 

∑
𝑗∈ 𝑖 

𝑏 𝑗 ( 𝑠 − 1) (25)

here | 𝑖 | is the number of neighbours of platform i . This particular lin-

ar combination is based on the so-called maximum degree weights [36] .

ther weights can be also used. It can be shown that if the communica-

ion graph is connected, the values b i ( s ) after many iterations converge

o the mean �̄� [36] . 

The search continues until the global stopping criterion is satisfied.

he local stopping criterion is calculated on each platform indepen-

ently based on the spread of the local positional particles { 𝐫 𝑚,𝑖 0 ,𝑘 } , mea-

ured by the square-root of the trace of its sample covariance matrix

 k . For example, if the spread of particles on platform i is smaller than

 certain threshold ϖ, then the local stopping criterion is satisfied and

s given a value of one, otherwise it is zero. This local stopping crite-

ion value (zero or one) becomes the initial state of the global stopping

riterion on platform i , denoted 𝜎i (0): 

𝑖 (0) = 

{ 

1 if 
√

tr [ 𝐂 𝑘 ] < 𝜛 

0 otherwise 
(26) 

he global stopping criterion is computed on each platform using the

verage consensus algorithm, using (25) , but with b i replace by 𝜎i . After

 sufficient number of iterations, S , platform i decides to stop the search

f at least one of the platforms in the formation has reached the local

topping criterion, that is, if 𝜎i ( S ) > 0. 

emark. Both estimation and control are based on the consensus algo-

ithm. While the cooperative control is using the average consensus (25) ,

he decentralised measurement dissemination of Section 3 achieves the

onsensus on the set of measurements at time k . The consensus algo-

ithm is iterative and hence its convergence properties are very impor-

ant. First note that, although the network topology changes with time

as the robots move while searching for the source), during the short in-

erval of time when the exchange of information takes place, the topol-

gy can be considered as time-invariant . Furthermore, assuming bidi-

ectional communication between the robots in formation, the network

opology can be represented by an undirected graph, The convergence of

he consensus algorithm for a time-invariant undirected communication

opology is guaranteed if the graph is connected [37–39] . Note that this

heoretical result is valid for an infinite number of iterations. In prac-

ice, if the communication graph at some point of time is not connected,

r if an insufficient number of consensus iterations is performed, it may

appen that one or more robots are lost (they could re-join the forma-

ion only by coincidence). This event, however, does not mean that the

earch mission has failed: the emitting source will be found eventually,
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Table 1 

Source location estimates by in- 

dividual robots at the end of 

search. The true coordinates are 

𝑋 0 = −166 , 𝑌 0 = −147 

robot i 𝑋 0 𝑌 0 

1 − 167.59 − 146.24 

2 − 167.53 − 146.53 

3 − 168.74 − 147.24 

4 − 167.49 − 146.06 

5 − 168.02 − 146.52 

6 − 167.07 − 146.51 

7 − 167.90 − 147.77 

Fig. 2. An illustrative run of the decentralised multi-robot search - the source 

position particles { 𝐫 𝑚,𝑖 0 ,𝑘 } for platform 𝑖 = 1 at discrete-time (a) 𝑘 = 16 ; (b) 𝑘 = 43 . 

Fig. 3. An illustrative run of the decentralised multi-robot search: the prior (red 

line) and the final posterior density (blue line) of the source strength parameter. 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 4. The number of links in the communication graph over time. 
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18 
. Numerical results 

.1. An illustrative run 

In order to illustrate the proposed decentralised multi-robot search,

et us consider the following scenario. All physical quantities are in

rbitrary units (a.u.). The search domain is a square, whose area is

00 ×500, centered at coordinates (0,0). The true source parameters

re 𝑋 0 = −166 , 𝑌 0 = −147 and 𝑄 0 = 5 . The centroid of the multi-robot

ormation is initially at coordinates 𝑥 𝑐 0 = 225 , 𝑦 𝑐 0 = 240 . The formation

s initially in the shape of a regular hexagon, whose side length is

0. There are 𝑁 = 7 robot platforms in the formation, one in the cen-

re and six on the vertices of the hexagon. The initial heading angles

f the seven platforms are random, with mean −130 ◦ and standard

eviation of 2 ∘. The process noise covariance matrix is diagonal, i.e.

 = diag [2 . 5 ⋅ 10 −4 𝛿, 2 . 5 × 10 −4 𝛿, 2 . 5 × 10 −5 ] , where the motion integra-

ion interval 𝛿 = 0 . 25 . The communication distance is 𝑅 max = 25 , result-

ng in the communication network graph shown in Fig. 1 at 𝑘 = 1 . Envi-

onmental and sensor parameters are chosen as follows: 𝐷 = 1 , 𝜏 = 250 ,
 = 0 . 25 , 𝑎 = 1 and 𝑡 0 = 1 . 

Algorithm parameters are selected as follows: 𝜅0 = 3 , 𝜗 0 = 5 . 2 , 𝑀 =
5 2 , 𝕍 = {1} , 𝕆 = {−3 , −2 , −1 , 0 , 1 , 2 , 3} degrees per unit of time, 𝕋 =
0 . 5 , 1 , 2 , 4 , 8 , 16 , 32 , 64} . The number of iterations, both for the exchange

f measurement trios and in the consensus algorithm, is fixed to 30. The

ocal search stopping threshold is 𝜛 = 3 . 
The results obtained by an illustrative run of decentralised multi-

obot search are discussed next. Fig. 2 is the top-down view of the search

rea, displaying the trajectories of all seven searching robots as well as

he the source position particles { 𝐫 𝑚,𝑖 0 ,𝑘 } for platform 𝑖 = 1 at step index

a) 𝑘 = 16 and (b) 𝑘 = 43 . The source location is marked by an asterisk,
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Fig. 5. Simulation results for the decentralised multi-robot search when using 

𝑀 = 15 2 , 20 2 , 25 2 , 30 2 and 50 2 particles in the searching algorithm. Graph (a) 

shows the mean search time and (b) shows the mean absolute error in the esti- 

mation of the source’s position. The error bars correspond to the 5th and 95th 

quantiles and all results are obtained over 200 Monte Carlo simulations. 
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Fig. 7. Simulation results for the decentralised multi-robot search when using 

𝑁 = 1 , 7 , 19 and 37 searching platforms. Graph (a) shows the mean search time 

and (b) shows the mean absolute error in the estimation of the source position. 

The error bars correspond to the 5th and 95th quantiles and all results are ob- 

tained over 200 Monte Carlo simulations. 
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hile the resulting mean plume is indicated by a contour plot. Note that

he plume size is much smaller than the search area. Fig. 2 a shows the

articles before resampling. The particles are placed on a regular grid

hus mimicking a grid-based approach, with the value of particle weights

ndicated by a gray-scale intensity plot (white means a zero weight).

ince the wind direction coincides with the x axis, and all concentra-

ion measurements until 𝑘 = 16 were zero, the weights of the particles

eft from robot trajectories are small (almost zero). This provides a good

isual representation of the posterior 𝑝 ( 𝐫 0 | 1∶ 𝑘 ) . Fig. 2 b shows the situ-

tion after a non-zero concentration measurement was collected by the

ulti-robot team (at 𝑘 = 43 ). The positional particles have been resam-

led at this point of time and moved closer to the true source location.

he total duration of the search on this run was 𝑘 = 53 . All six platforms
19 
ecided simultaneously to terminate the search at 𝑘 = 53 . The estimates

f source location coordinates, computed by all platforms in the team

re given in Table 1 . The estimates are obtained as the weighted sample

eans of { 𝑤 

𝑚,𝑖 
𝑘 =53 , 𝐫 

𝑚,𝑖 
0 ,𝑘 =53 } , 𝑖 = 1 , … , 𝑁 = 7 . While the estimates at indi-

idual platforms are different, their standard deviations are small: 0.53

or 𝑋 0 and 0.6 for 𝑌 0 . 

Fig. 3 shows the prior and the final posterior density of source

trength, p ( Q 0 ) and 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 =53 ) , respectively. The support of the

osterior includes the true value of Q 0 and is more concentrated than

he prior. 

Continuing with the same illustrative run, Fig. 4 shows the number

f links in the communication network graph, over time. Initially, for

he regular hexagon shaped formation, the number of links is 12 (see

ig. 1 at 𝑘 = 1 ). Because of deformations of the shape of formation as
Fig. 6. Examples of platform formations. In (a) 𝑁 = 7 
platforms, in (b) 𝑁 = 19 platforms and in (c) 𝑁 = 37 
platforms. The communication graphs, detailing the 

communication links between the platforms, are indi- 

cated with green lines. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 8. Graph showing the probability that a platform is lost during the search 

task as the communication distance R max increases. The solid blue line relates to 

using 20 iterations during consensus, the red dashed line to using 30 iterations 

and the green starred line to using 40 iterations. The results correspond to 𝑁 = 7 
platforms. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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he robots move, the topology of the network varies. This is reflected in

ccasional drops in the number of links. Nevertheless, throughout the

earch, the communication graph remains connected and none of the
ig. 9. An example of the decentralised multi-robot search using 𝑁 = 37 platforms. G

 = 0 , 10 , 18 and 24, respectively. The concentration of the plume is represented by th

ots. 

20 
obots in the team is lost. If the communication range R max is reduced,

t is possible that some of the nodes in the graph become at some stage

isconnected, leading to the formation break-up. The search mission

ay be successfully accomplished even if this happens, however, some

f the platforms are then lost. 

.2. Monte Carlo simulations 

We now use Monte Carlo simulations to characterise the perfor-

ance of the search algorithm. Unless otherwise specified, the number

f Monte Carlo simulations is 200, and the parameters describing the

cenario and algorithm are the same as specified in the previous sec-

ion. The exception is that we now consider a search area of 750 ×750.

We start by analysing the performance of the algorithm as the

umber of particles M increases. Specifically, we consider 𝑀 =
5 2 , 20 2 , 25 2 , 30 2 and 50 2 particles, which correspond respectively to an

verage of one particle per 50 ×50, 37.5 ×37.5, 30 ×30, 25 ×25 and

5 ×15 a.u. 2 in the search area. The results of this analysis are shown

n Fig. 5 . Graph (a) shows the mean search time and graph (b) shows

he mean absolute error in the estimation of the source’s position. From

he first graph, we observe that using 𝑀 = 50 2 particles results in the

mallest mean search time however there is no obvious relationship be-

ween the search time and M . In contrast, the second graph indicates that
raphs (a)–(d) show the positions and trajectories of the platforms at step indices 

e blue contours and the position of the particles for 𝑖 = 1 platform by the black 
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Fig. 10. An illustrative run of the decentralised multi-robot search on the experimental dataset using 𝑁 = 7 platforms. Graphs (a)–(d) show the positions and 

trajectories of the platforms at step indices 𝑘 = 0 , 12 , 22 and 32, respectively. The concentration of the plume is represented in grayscale (darker colours represent 

higher concentration). 
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ncreasing the number of particles reduces the error in the estimation of

he source’s position; the mean absolute error decreases from 4.5 a.u to

.5 a.u. as M increases from 15 2 to 50 2 particles. However, of course,

sing more particles increases the computational overhead for a single

latform. 

Next, we analyse the performance of the algorithm as the number of

latforms increases as follows: 𝑁 = 1 , 7 , 19 and 37 platforms. The geo-

etric formations for 𝑁 = 7 , 19 and 37 platforms are illustrated in Fig. 6 .

ow, increasing the size of the formations also increases the size of the

ommunication network, thus more iterations will be required in order

o reach consensus. Accordingly, the number of iterations performed in

he consensus algorithm is set to 30, 220 and 920 for 𝑁 = 7 , 19 and 37

latform formations, respectively. These iteration numbers are based

n calculating the theoretical convergence time of the initial communi-

ation graphs using the formula in [39] . Note that we return to using

 = 25 2 in the search algorithm. 

The results of increasing the number of platforms are shown in Fig. 7 :

raph (a) shows the mean search time and graph (b) shows the mean

bsolute error in the estimation of the source’s position. From the first

raph, we observe a significant decrease in mean search time as the
21 
umber of platforms increases; the mean search time decreases from

8275 a.u. to 2059 a.u. as the number of platforms increases from 1

o 37. Similarly, the second graph indicates that the mean absolute er-

or in the estimation of the source’s position decreases with the num-

er of platforms; the mean absolute of error when using 1 platform is

.5 a.u. and then reduces to 2.7 a.u. when using 37 platforms. These

esults are not unexpected, we would hope that using more search

latforms would decrease the search time and locate the source with

reater accuracy. In terms of the communications between platforms,

he mean number of links in the communication graphs were 11.35 for

 = 7 platforms, 35.64 for 𝑁 = 19 platforms and 67.05 for 𝑁 = 37 plat-

orms. Relative to the number of links the formations initially started

ith, these values equate to a percentage decrease of 5.42% for 𝑁 = 7
latforms, 15.14% for 𝑁 = 19 platforms and 14.04% for 𝑁 = 37 plat-

orms. Thus, these results indicate that the larger platform formations

ere more dispersed during the searching task. An example of one sim-

lation for the 𝑁 = 37 platform formation is shown in Fig. 9 . Note

hat the figure shows that one of the platforms becomes separated

rom the formation however the remaining formation still locates the

ource. 
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Finally, we examine the stability of the platform formation whilst

earching for the source. Specifically, we vary the communication dis-

ance R max from 20 to 30 and calculate the probability a formation of

ize 𝑁 = 7 breaks up when using 20, 30 and 40 iterations to reach a

onsensus on moving. The resulting probabilities, as a function of com-

unication distance R max , are shown in Fig. 8 . The solid blue line corre-

ponds to using 20 iterations in the consensus algorithm, the red dashed

ine to 30 iterations and the green starred line to 40 iterations. Note that

hese probabilities are calculated using 100 Monte Carlo simulations.

he graph shows that the probability that the formation breaks apart

ncreases when using fewer iterations to reach consensus and when the

ommunication distance between platforms is decreased. The first trend

s due to the changing topology of the communication graph, as the num-

er of links in the graph decreases more iterations will be required to

each consensus on movement–failure to reach a consensus will result

n the formation breaking apart. The second trend is due to the pro-

ess noise in the movement of the platforms; errors in movement of the

latforms become more critical if the communication distance R max is

maller. 

.3. Experimental dataset 

In this section, we evaluate the proposed search algorithm on an

xperimental dataset. The dataset is provided by COANDA Research

 Development Corporation and corresponds to finding the source of

 fluorescein dye. The dye is released at a constant rate from a nar-

ow tube in a large recirculating water channel. The data comprises a

equence of 340 frames of instantaneous concentration field measure-

ents in the vertical plane and is sampled at every 10/23 s. The size of

 frame is 49 ×49 pixels, where a pixel corresponds to a square area of

.935 ×2.935 mm 

2 . 

As the size of the data is relatively small, we follow the approach used

n [28] : upscale each frame by a factor of 3 using bicubic interpolation

nd place the result in the top left corner of a 500 ×500 search area.

 measurement obtained by a platform is thus the integer value of the

oncentration of the dye taken from the closest spatial and temporal

ample from the experimental data. 

An example of the search algorithm running on the experimental

ata is shown in Fig. 10 . The figure shows the progress of 7 platforms

t step indices 𝑘 = 0 , 12 , 22 , 32 . Note that the algorithm terminated at

 = 33 . With 200 Monte Carlo simulations, the mean search time for

he algorithm was 2525 a.u., with a 5th and 95th quantile of 1840 a.u.

nd 3445 a.u., respectively. Note that in all simulations the formation

tarted from the bottom right hand corner indicated in Fig. 10 (a). 

. Conclusions 

In this paper, we have proposed the first decentralised infotaxic

earch algorithm for a group of autonomous robotic platforms. The al-

orithm allows the platforms to search and locate a source of hazardous

missions in a coordinated manner without the need for a centralised

usion and control system. More precisely, this distributed coordination

s achieved by local exchange of measurement data between neighbour-

ng platforms. Similarly, the movement decisions taken by the platforms

ere reached using a distributed average consensus algorithm over the

hole formation. The key aspect is that individual platforms only re-

uire knowledge of their neighbours; the global knowledge of the com-

unication network topology is not required. An advantage of adopted

istributed framework is that all platforms are treated equally, making

he proposed search algorithm robust to the failure of a single platform.

umerical studies of the algorithm focused on are analysis of the search

ime as a function of the size of the multi-robot formation. Furthermore,

he stability of the formation was analysed as a function of the number

f consensus iterations and the maximum communication distance be-

ween platforms. Finally, the search algorithm has been demonstrated
22 
sing a dataset collected experimentally by releasing a fluorescein dye

n a large recirculating water channel. 

There many avenues for future work. One possibility is to incorpo-

ate a feedback term when making movement decisions with the aim

f keeping the platforms within communication distance of each other.

uch an approach could allow a wider range of formation topologies

hat evolve in time as the searching task progresses. Another possibility

ould be to consider performing consensus on the posterior pdf held lo-

ally by each platform, e.g. via covariance intersection [40] . Finally, we

ould investigate methods to improve the convergence of the distributed

onsensus algorithm using different weights, allowing the platforms to

ave a local memory [41] or by using the distributed Alternating Direc-

ion Multipliers Method [42,43] . 
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ppendix A. Derivation of the likelihood 

Here we derive (16) . Using the Bayes rule we can write: 

 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) = 

𝑔(  𝑘 |𝑄 0 , 𝐫 0 ) 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) 
𝑔(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) 

(A.1)

e are after 𝑔(  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) and hence from (A.1) we have 

 (  𝑘 |𝐫 0 ,  1∶ 𝑘 −1 ) = 

𝑔 (  𝑘 |𝑄 0 , 𝐫 0 ) 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) 
𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) 

(A.2)

he expressions for the terms on the right-hand side of (A.2) are avail-

ble in the analytic form. Based on (8) 

(  𝑘 |𝑄 0 , 𝐫 0 ) = 

𝑁 ∏
𝑖 =1 

𝑄 

𝑧 𝑖 
𝑘 

0 𝜌( 𝐫 0 , 𝐫 
𝑖 
𝑘 
) 𝑧 

𝑖 
𝑘 

𝑧 𝑖 
𝑘 
! 

𝑒 − 𝑄 0 𝜌( 𝐫 0 , 𝐫 
𝑖 
𝑘 
) , (A.3)

hile 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) and 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) are Gamma distributions, with

arameter pairs ( 𝜅𝑘 −1 , 𝜗 𝑘 −1 ) and ( 𝜅k , ϑk ), respectively, see (12) . Upon

he substitution of (A.3) and the expressions for 𝑝 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 −1 ) and

 ( 𝑄 0 |𝐫 0 ,  1∶ 𝑘 ) into (A.2) , and using the following identities: 

𝑄 

∑𝑁 
𝑖 =1 𝑧 

𝑖 
𝑘 

0 𝑄 

𝜅𝑘 −1 −1 
0 

𝑄 

𝜅𝑘 −1 
0 

= 1 (A.4)

exp 
(
− 𝑄 0 

∑𝑁 

𝑖 =1 𝜌( 𝐫 0 , 𝐫 
𝑖 
𝑘 
) 
)

exp (− 𝑄 0 ∕ 𝜗 𝑘 −1 ) 

exp (− 𝑄 0 ∕ 𝜗 𝑘 ) 
= 1 (A.5)

e obtain (16) . 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.inffus.2019.12.011 . 
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