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Abstract—Alignment and orientation of cells play an important
part in the function of biological tissue. Recent developments
in bioengineering using 3D scaffolds have created an increased
need for computational techniques to measure orientation which
extend beyond the existing 2D measures of orientation to 3D
measures. Initial studies of 3D alignment have focused on
determining individual orientations, however, to truly understand
the impact these structures have on the cellular alignment we
need to understand the overall distribution of the orientations and
their statistics. Hence, in this paper we develop an approach for
determining 3D cellular alignment based on image gradients and
directional statistics. The intensity gradients of the volumetric
image are used to construct a 3D vector field and the local
dominant orientations of this vector field then determined.

I. INTRODUCTION

Structure at a cellular level is an important aspect in the

function of biological tissue. The alignment and orientation of

cells and fibres have marked effects on the properties of tissue.

For instance, the structural organization of the cell cytoskele-

ton can impact on functional differentiation of stem cells [1];

orientation of stress fibres can affect cell remodelling [2]; and

orientation of actin filaments are important in determining

cellular shape and also cell movement [3].

However, 2D alignment of 3D structures do not necessarily

give the full picture, with 3D structures of tissue often critical

to the function of the tissue. At the same time, cells which

have been cultured on a 2D substrate vs those which have

been embedded in a 3D media have been shown to produce

different orientations [4]. Accordingly, recent developments in

tissue engineering have been designed to control the growth

of cells and thus the cellular alignment using 3D scaffolds.

By engineering scaffolds for use in biomanufacturing, the

patterns of the scaffold can be used to guide cell alignment [5].

Similarly encapsulating the cells in hydrogels can result in en-

gineered tissues with complex structures [6]. Hence, being able

to quantify cellular alignment within 3D cell populations is

necessary for understanding tissue architecture or engineering

tissue with the desired structures and validating the outcomes.

Using imaging to understand the 3D cellular structure both

for individual cells and for the construction/reconstruction of

tissue has been of interest for a number of years [7]. However,

with increased access to large amounts of 3D imaging data at

a cellular level, analysis of 3D data is gaining larger traction

and a number of different computational approaches to 3D

assessment of cellular structure have been proposed [8], [9].

In particular the use of structure tensors has been shown to

be an effective method for determining fibre orientation in

3D [10], [11].

While the use of structure tensors may be effective when

calculated globally across a volume, in many cases we need to

estimate orientations on a local level to account for differences

in orientation of different objects. In this case over a small

local window the performance of the structure tensor is similar

to that of the image intensity gradients on which it is based.

Using image intensity gradients directly also circumvents the

need to calculate the large number of eigenvalue decomposi-

tions required to estimate the orientation from the structure

tensors, vastly reducing the computation time. In [10] the

authors present a toolbox for the assessment of the morphology

fibres in bioengineered scaffolds based on the use of structure

tensors. In this case, to overcome the need to assess the

eigenvalues associated with each of the structure tensors for

every voxel, the original data is preprocessed to give a binary

skeleton and only the orientation of these points are used.

However, one of the aspects which is not addressed in [10]

is whether the resultant local orientations are actually mean-

ingful. For this analysis of the spherical distribution based on

the eigenvalues of each of the structure tensors is required.

At the same time not only do we want to know whether

individual estimates of orientation are meaningful we also

want to understand the overall distribution of the orientations

across the entire volume. In [11] structure tensors are also

used to estimate the orientation; following which an overall

orientation of the volume is estimated and spherical statistics

are employed to determine the dispersion of the distribution

of orientations. This approach provides statistical information

about the volume but the estimation of the global principal

orientation assumes a structure on the local orientations which

may not be valid.

One approach to ensuring the validity of the local orien-

tation estimates is to determine whether the distribution of

the local region is non-spherical. To be spherical requires

the data to be circular in all three coordinate planes. Hence,

it is possible to use 2D measures of circularity of the data

to determine the sphericity of the local region. In terms of

second order statistcs, one computationally efficient measure

of circularity (propriety), is the degree of impropriety based

on the circularity coefficients [12], [13]. By using the image

intensity gradients to determine the degree of impropriety in

each of the 3 coordinate planes, only those voxels whose local

region are considered significantly improper in at least one
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Fig. 1. Diagram illustrating the relationship between spherical polar coordi-
nates, (r, θ, φ), and Cartesian coordinates, (x, y, z). Note that θ represents
the elevation angle and φ the azimuth angle.

plane are included in the orientation estimation.

In this paper we propose a method to estimate orientations

from 3D data which determines the statistical validity of the

local orientation estimates and the spherical statistics of the

entire volume. We propose using the image intensity gradients

directly to estimate orientation. The degree of impropriety

of the gradients is then used to estimate the sphericity of

the local regions of each voxel and only those voxels which

are considered non-spherical are included in the orientation

estimation. For the orientation estimation we use a maximum-

likelihood estimator [14] to determine the dominant orientation

of the selected voxels following which the distributions of

the orientations across the entire volume are assessed. The

proposed approach is tested on simulations with volumes con-

taining fibres with varying alignments and fibrous composite

scaffolds [10] with the results showing the proposed method

is capable of distinguishing different structures.

II. ESTIMATION OF LOCAL 3D ORIENTATION

In this section we outline our approach to estimating the

local dominant orientation of a 3D object in volumetric

images. Instead of assuming a certain type of 3D structure, e.g.

cylindrical fibres of certain diameter, or segmenting the data,

our approach is based on the relationship between the local

3D orientation and the vector field formed from the gradients

of the image intensity. This relationship and our approach are

outlined as follows.

In terms of notation, the local orientation is defined using

the spherical coordinate system (r, θ, φ), where r represents

the radius, θ is the elevation angle and φ is the azimuth

angle. The elevation angle is measured relative to the positive

z-axis and the azimuth angle is measured relative to the

positive x-axis, in the (x, y)-plane. An illustration of these

coordinates are shown in Fig. 1. Finally, for reference, the

mapping between the standard Cartesian coordinate system

and the spherical system is:


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
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x

)


 (1)

To cover the whole sphere then θ ∈ [0, π] and φ ∈ [0, 2π]
however 3D orientations are a type of axial data [15], [16].

Accordingly, the orientation at (θ, φ) is equivalent to the

orientation at (π − θ, φ+ π). As a consequence, we consider

only half of the sphere and restrict the azimuth angle to

φ ∈ [0, π].

A. Image Intensity Gradient Vs Local Orientation

Our approach relies upon the computation of the im-

age intensity gradient ~G(x, y, z) from the volumetric image

I(x, y, z). This gradient is a vector field that is constructed

from the differentials of I(x, y, z) in the x, y and z directions,

i.e.:

~G(x, y, z) =



Gx(x, y, z)
Gy(x, y, z)
Gz(x, y, z)


 , (2)

where Gi represent the differential of I with respect to the ith
direction. In practice, to account for noise in the image, the

differential operator is combined with a Gaussian filter [11],

[17], [18]. Accordingly, the ith components of ~G, where i ∈
{x, y, z}, is obtained via the following convolution

Gi(x, y, z) = hi(x, y, z) ∗ I(x, y, z), (3)

where ∗ is the convolution operator and hi(x, y, z) is the

derivative of a Gaussian window with respect to i:

hi(x, y, z) =
2i

σ2
exp

{
−
x2 + y2 + z2

σ2

}
.

In terms of implementation, we limit this derivative filter to a

compact support defined by a (2s+ 1)× (2s+ 1)× (2s+ 1)
cube, i.e. the filter is non-zero for the voxels x, y, z ∈ [−s, s],
and we set σ = (s+ 2)/4.

The importance of this vector field ~G is that it encodes the

structural information present in the image. The magnitude

of ~G is large at the boundary of objects – a property used

in edge detection – and the corresponding direction at these

object boundaries is normal to the orientation of the boundary.

In other words, the direction of the gradient vectors at an object

boundary are normal to the local dominant orientation that we

wish to estimate. An illustration of this relationship is shown

in Fig. 2(a). Accordingly, to determine the local dominant

orientation, we need to estimate the normal vectors to ~G and

extract their orientation. In 2D this problem is straightforward,

the normal vectors are at 90◦ to the gradient vectors [18]. In

3D however the relationship is more complicated as a normal

vector is defined relative to a plane rather than a single vector.

Thus, we employ tools from spherical statistics to determine

the local dominant orientation from ~G. In particular, we model
~G locally using a girdle distribution as discussed in the next

section.

B. Girdle Distributions

In spherical statistics, a girdle distribution is used to model

a set of data points defined in spherical polar coordinates

(θ, φ) that are concentrated on a great circle [15], [16], i.e.

the data points all reside in the same plane. The distribution is
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Fig. 2. Diagrams illustrating the relationship between the local dominant orientation and a girdle distribution on a sphere. Part (a) shows a set of image intensity
gradient vectors estimated from an object at a certain orientation. The gradient vectors reside in a plane that is normal to the local dominant orientation. Part
(b) shows a set of data points drawn from a girdle distribution with a certain polar axis. Similar to the local dominant orientation, the polar axis is normal to
the great circle where the data points reside.

characterised by a concentration parameter γ, which describes

the concentration of the points around the circle, and the

polar axis, which is the normal vector to the great circle.

An illustration of a girdle distribution is shown in Fig. 2(b).

Importantly, the figure highlights the similarity between a

girdle distribution and the local dominant orientation. The

image intensity gradients at the boundary of an object all reside

in the same plane. Which if we compare Fig. 2(a) and Fig. 2(b)

we can see is conceptually the same as the data drawn from a

girdle distribution. Therefore, if these planes coincide then the

polar axis is aligned with the local dominant orientation. Thus,

the problem of determining the local dominant orientation can

be posed as determining the polar axis of a girdle distribution

assuming the image intensity gradients are data points drawn

from the distribution [15].

This link between the girdle distribution and the local 3D

orientation of an object is leveraged in methods based on

the structure tensor. If the image intensity gradients used to

construct the structure tensor follow a girdle distribution then

the polar axis is equivalent to the eigenvector corresponding

to the smallest eigenvalue of the tensor [15]. Although the

structure tensor is only a 3 × 3 matrix, performing local

eigenvalue decompositions to gain a per voxel estimate of the

orientation is time consuming for a 3D volume [11], [10].

Accordingly, in this paper we consider an alternative approach

to the orientation estimation problem based on the work of

Selby [14]. Selby proposed the following probability density

function for a girdle distribution

g(θ, φ; γ, α, β) =
γ sin(θ)

4π (1− e−γ)
·

exp
(
−γ

∣∣cosα cos θ + sinα sin θ cos(φ− β)
∣∣
) (4)

where (θ, φ) is the spherical coordinate describing the direc-

tion of the vector, γ is the concentration parameter and (α, β)
is the polar axis of the distribution. Based on this density

function, Selby derived the following maximum-likelihood

estimate for the polar axis given N data points drawn from

the distribution:

(α̂, β̂) = argmin
α,β
{Z(α, β)} (5)

where Z is the likelihood function

Z(α, β) =

N∑

n=1

∣∣cosα cos θn + sinα sin θn cos (φn − β)
∣∣,

and (θn, φn) are the elevation-azimuth angles of the ith data

point. In the next section we use this maximum-likelihood

estimator as the basis for our orientation algorithm.

C. Proposed Algorithm

Our proposed algorithm comprises four steps as follows.

The first step of our algorithm is to compute the image

intensity gradient ~G using the convolution operation defined

in (3). For this paper, we set s = 6 in the derivative filter hi.

As a consequence the support of the filter is 11 × 11 × 11
voxels.

The second step is to classify the vectors in the image

gradient into two groups: spherical and non-spherical. This

classification is achieved by testing the sphericity of the

gradient vectors within a local region and then repeating the

test for every vector in ~G. The details of this local sphericity

test are covered in Section III. For reference, we set the local

region to be 7× 7× 7 voxels.

The next step is to determine the local dominant orientation

for the vectors classified as non-spherical. To estimate this

orientation, we adapt Selby’s [14] maximum-likelihood esti-

mator for determining the polar axis of a girdle distribution.

Specifically, for each non-spherical vector, we estimate the

polar axis angles given the a local regionW centred around the

vector. Note that α and β equate respectively to the elevation



and azimuth angles of the local orientation. The estimate is

obtained by solving the following minimisation:

argmin
α,β

∑

x∈W

G(x)
∣∣∣cos(α) cos

(
θ̂(x)

)

+ sin(α) sin
(
θ̂(x)

)
cos

(
φ̂(x)− β

)∣∣∣ (6)

where x = (x, y, z)T denotes the voxel coordinates, G(x) =∣∣ ~G(x)
∣∣ is the magnitude of the image intensity gradient, and

θ̂(x) and φ̂(x) are respectively the estimates of elevation and

azimuth angle. These estimates are determined by applying

the transformation in (1) to the image gradient, i.e.

θ̂(x) = cos−1

(
Gz(x)

G(x)

)
, and φ̂(x) = tan−1

(
Gy(x)

Gx(x)

)
.

Note that we have adapted Selby’s original formulation of the

maximum-likelihood estimate to include the magnitude of the

image vector as a weight coefficient. The local region W is

set to 11× 11× 11 voxels.

In terms of implementation, we use an iterative method

to solve the minimisation in (6) – a closed-form expression

does not exist. Our iterative method involves calculating the

argument of the minimisation for a uniform grid of α and β
values and choosing the pair which coincide with the minimum

value. Although the accuracy of such a solution is limited to

the grid size, it has two benefits: first, for a given (α, β)-pair

the argument of the minimisation can be computed efficiently

using blockwise multiplication for every non-spherical vector.

Second, by using this parallel computation, the search space

of the algorithm is reduced to the size of the grid, i.e. the

algorithm can be speed up by reducing the number of (α, β)-
pairs in the grid. For this paper, we consider a 2D grid that

spans α, β ∈ [0, 180◦] in steps of 1◦ for each angle.

The final step in the algorithm is to assess the distribution

of the estimated local orientations over the whole volume. To

perform this assessment, the set of local orientation angles,

{α̂n, β̂n}
N
n=1

, are converted to a set of unit vectors, {~vn}
N
n=1

,

where N is the number of data points. Note that, as the

orientations are axial data, the azimuth angle β̂ is multiplied

by 2 so that the vectors can cover the whole unit sphere.

Given these unit vectors, the assessment of their distribution

comprises four measures: the first three are the non-circularity

measures detailed in Section III. The final measure is the mean

resultant length from spherical statistics, which is calculated

as [15], [16]:

R̄ =

∣∣∣∣∣
1

N

∑

n

~vn

∣∣∣∣∣ . (7)

This quantity varies between 0 and 1; R̄ ≈ 0 indicates the vec-

tors are widely dispersed whereas R̄ ≈ 1 indicates the vectors

are heavily concentrated [16]. The non-circularity measures

are used to quantify the sphericity of the overall distribution

and the mean resultant length quantifies the concentration of

the vectors.

III. TESTING DISTRIBUTION OF ORIENTATION

Determining the sphericity of data is not a straightforward

problem, tests are either tailored to certain distributions or

computationally intensive which preclude their use when re-

quiring large numbers of tests on local regions with unknown

distributions. However, for data to be spherically distributed

requires that the data is also circularly distributed when

projected into each of the 3 coordinate planes (x, y), (x, z) and

(y, z). By taking advantage of this knowledge we can employ

measures of circularity which are generally more tractable.

Whether determining the sphericity or circularity of data it

is worth considering that the orientation of the data is only

one aspect and to fully describe a vector we also require a

magnitude. Typically, both spherical and circular distributions

sit on the unit sphere/circle, and while this can be useful if

we are considering only the angular distribution of the data

this gives no indication of the magnitude of the vectors. An

alternative is to form complex data from the vectors such that

a vector in the (x, y)-plane, ~v(x, y), can be represented as

the complex number x + y, and similarly for the other 2

planes. From which we can use complex statistics to assess

the circularity of the data allowing us to take advantage of the

entire information contained with in the vector not just the

orientation.

For a complex variable to be circular requires the probability

distribution to be invariant under rotation in the complex plane.

A weaker, more tractable, property however can be constructed

in terms of only the second order statistics; if the variable is

uncorrelated with its complex conjugate then it is considered

second order circular or proper. Meaning that for the complex

variable w ∈ C
N constructed from the two real variables wr ∈

R
N and wi ∈ R

N such that w = wr + wi, the covariance

matrix is C = E
{
ww

H
}

and the complimentary covariance

is C̃ = E
{
ww

T
}

. A proper complex variable has C̃ = 0,

otherwise the variable is improper, with impropriety implying

non-circularity [13].

Using the second order statistics of the data a test for impro-

priety can be constructed based on the circularity coefficients

of the data. Starting with the coherence matrix

M = C
−1/2

C̃C
−T/2, (8)

we can define the Takagi’s factorization (a special singular

value decomposition) which gives

M = FKF
T (9)

where F is a complex unitary matrix and K =
diag (k1, k2, . . . , kN ) where {kn}

N
n=1

are the canonical cor-

relations also known as the circularity coefficients [12], [13].

These circularity coefficients can be used to measure the

degree of impropriety of the data based on [12]

ℓ =1−
N∏

n=1

(
1− k2n

)
= 1−

det C

det2 C
(10)



where

C =

[
C C̃

C̃
∗

C
∗

]

and ℓ = 0 equates to proper data and ℓ = 1 to proper.

For a scalar variable w with covariance C = E
{
|w|2

}

and complementary covariance C̃ = E
{
w2

}
the degree of

impropriety becomes

ℓ =
|C̃|2

C2
. (11)

Using (11) we can test the impropriety or non-circularity of

each of the local regions in all 3 coordinate planes. Due to only

requiring calculation of the complex second order statistics

this method is computationally efficient. Meaning that despite

needing to calculate in all three planes when dealing with

a large number of local regions this is still a more efficient

method than calculating a single spherical measure.

IV. RESULTS

In this section we present the results of our proposed algo-

rithm on both synthetic and real data. The code to reproduce

these results can be downloaded from the following repository

https://github.com/beteje/Orientation.

A. Data Generation

To test our algorithm, we generated synthetic volumes that

mimic fibrous data and varied the alignment of the fibres

within the volumes. We generated these volumes based on the

method outlined in [10]. In brief, a volume is 256×256×256
voxels in size and comprise 100 simulated fibres. Each fibre

is parametrised in terms of their radius, length, position and

orientation. The radius of the fibres vary between 2 and 10

voxels, and their lengths vary between 0.3 and 0.9 of the

volume size. The position of the fibres is random within

volume provided none of the fibres overlap with another. The

orientation of the fibres is controlled directly to set the overall

organisation of the fibres.

Using this method, we generate four volumes with the

following types of fibre organisation:

1) Random: The fibres are randomly orientated. The ele-

vation and azimuth angles for the fibres are randomly

drawn from the range 0–180 degrees.

2) Range: The fibres are more organised and their orien-

tation is concentrated to a certain range. Their elevation

angles vary between 70–100 degrees and their azimuth

angles between 90–120 degrees.

3) Double: There are two distinct orientations of the fibres.

For one set of fibres, their elevation angles vary between

30–35 degrees and their azimuth angles vary between

70–75 degrees. For the other set, their elevation angles

vary between 110–115 degrees and their azimuth angles

between 150–155 degrees.

4) Single: All of the fibres are orientated in one direction.

Their elevation angles vary between 30–35 degrees and

their azimuth angles vary between 70–75 degrees.

TABLE I
MEASURES OF NON-CIRCULARITY AND SPHERICAL MEAN RESULTANT

LENGTH FOR DIFFERENT DATASETS.

PSNR ℓXY ℓY Z ℓXZ R̄

Single

30 dB 0.83 0.94 0.94 0.96

20 dB 0.88 0.95 0.96 0.98

10 dB 0.85 0.95 0.94 0.97

Double

30 dB 0.80 0.80 0.50 0.35

20 dB 0.81 0.82 0.53 0.39

10 dB 0.77 0.86 0.62 0.57

Range

30 dB 0.64 0.80 0.51 0.89

20 dB 0.65 0.82 0.55 0.91

10 dB 0.67 0.83 0.51 0.91

Random

30 dB 0.01 0.18 0.19 0.03

20 dB 0.02 0.20 0.24 0.05

10 dB 0.05 0.30 0.41 0.07

Random Scaffold Data - 0.31 0.34 0.72 0.36

Aligned Scaffold Data - 0.73 0.57 0.07 0.89

We also test the performance of our algorithm under varying

amounts of noise. Specifically, for each of the volumes de-

scribed above, we add white Gaussian noise to the images to

obtain PSNR values of 30dB, 20dB and 10dB.

B. Synthetic Simulations

For the first set of simulations we visualised the orientation

estimates obtained from the data containing the concentrated

range of angles and the completely random data, both for a

PSNR of 30dB. Figure 3 shows the results obtained for the

range data. Firstly, we note that when comparing the simulated

fibres in Fig. 3(a) and the estimated fibres in Fig. 3(c) we can

see that the use of the non-circularity measures successfully

distinguishes the fibres from the background noise. However,

due to the effects of derivative filters in the estimation of the

gradient vectors the fibres dilate, meaning the estimated fibres

have a slightly larger radius than the true radius.

To aid the visualisation of the orientation angles each

combination of azimuth and elevation angles are given a

unique colour, as illustrated in Fig. 3(b). As can be seen from

the shades of the fibres in both Fig. 3(a) and Fig. 3(c), the

angles of the estimations are similar to those of the original

fibres. This is supported by the histograms of the estimated

angles where the majority of angle estimates fall between the

90–120 degree range for the azimuth and 70–100 degree range

for the elevation.

Figure 4 shows visualisation of the results obtained from

the random data. Again we can see that the estimated fibres

and angles in Fig. 4(c) correspond to those of the actual fibres

in Fig. 4(a). In this case we can see there are few fibres which

have a mottled effect, this primarily down to imperfections in

the visualisation. Fibres which are vertical can have an angle

which is close to 0 or close to 180. As the visualisation uses

increasing saturation to indicate increasing elevation any slight

https://github.com/beteje/Orientation
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(d) Azimuth estimates.
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(e) Elevation estimates.

Fig. 3. Results for fibrous data with a range of angles - azimuth angles 90–120 degrees and elevation angles 70–100 degrees with PSNR = 30dB. (a) The
true locations and angles of the simulated fibres. (b) The colour key for elevation and azimuth combinations. (c) The estimated fibres. (d) The distribution of
the estimated azimuth angles. (e) The distribution of the estimated elevation angles.

changes around the 0 and 180 angles will lead to a combination

of very light and very dark shades of the same colour.

Having established that the proposed method could accu-

rately estimate data with different alignments, we next inves-

tigated the robustness of the method to noise. Figure 5 shows

the histograms of the distributions of the estimated angles for

the single data for different noise levels and Fig. 6 shows the

histograms for the double data. Both figures indicate that the

proposed method could accurately determine the angles of the

fibres. However, as the amount of noise increased there was an

increase in the spread of the angle estimates around the true

angles. If we consider the double data in Fig. 6, particularly

the elevation data, we can see that as the noise increases the

distribution of the estimates changes which can be accounted

for by more of the voxels being considered noise rather than

fibres.

Finally, to quantify the estimation results, Table I lists

results of the non-circularity tests for each of the coordinate

planes, ℓXY , ℓXZ and ℓY Z and the spherical mean resultant

length R̄. If we compare the single data with the random data

we can see the single data has high non-circularity across

all planes and also high resultant lengths for all noise levels,

conversely the random data has very low non-circularity results

and also low resultant lengths. These results support the visual

results indicating that the single data has high non-circularity

and also the alignment has a very concentrated direction

whereas the random data has low non-circularity and very

dispersed orientations. Looking at the results for the range

data we can see moderate levels of non-circularity but the high

mean resultant lengths indicate that the data is still directional.

Whereas the double data has high non-circularity but with

lower mean resultant length indicating that the data is non-

circular but with less concentrated direction.

C. Real Data

Having tested the proposed method on simulated data we

next tested the data on fibrous scaffold data from [10], this data

consisted of two different datasets one with aligned structures

and one with random structures. Visualisations of the obtained

estimates are presented in Fig. 7 and the corresponding non-

circularity and mean resultant length values are given in
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(d) Azimuth estimates.
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(e) Elevation estimates.

Fig. 4. Results for fibrous data with random - azimuth angles 0–180 degrees and elevation angles 0–180 degrees with PSNR = 30dB. (a) The true locations
and angles of the simulated fibres. (b) The colour key for elevation and azimuth combinations. (c) The estimated fibres. (d) The distribution of the estimated
azimuth angles. (e) The distribution of the estimated elevation angles.

Table I. From the visualisations of the data it is clear that

that there is more order to the aligned data. However, the

results in Table I indicate that the random data has moderately

high non-circularity in the (y, z)-plane, which is supported

by the histograms of the angle estimates in Fig. 7(d) and

Fig. 7(f) which whilst dispersed across all angles do indicate

a slight preferential direction. However the low value of the

mean resultant length indicates that this data is not well

organised. For the aligned data there are more distinct peaks

in the histograms shown in Fig. 7(e) and Fig. 7(g) which are

supported by the higher value of the mean resultant length.

V. CONCLUSIONS

In this paper we have proposed a method for estimating

and assessing local orientation in 3D data. Our method is

based on constructing image intensity gradients, testing their

sphericity at a local level, estimating local 3D orientation in

regions where the gradients are non-spherical and assessing

the distribution of these estimates. To test local sphericity per

voxel, we use concepts found in complex statistics, namely

the degree of impropriety or non-circularity. By computing the

local non-circularity per voxel we are able to classify spherical

and non-spherical regions of the image gradient. Using this

classification, our method estimates the local orientation at the

non-spherical voxels using a maximum-likelihood estimator.

Once these estimates have been obtained, we assess their

distribution globally again using the degree of non-circularity

and also the spherical mean-resultant length of the data. Key

to our proposed method is that each of the steps can be

efficiently implemented. We have demonstrated the efficacy

of our method on both synthetic and real data.
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(e) Elevation estimates, PSNR = 20dB.
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(f) Elevation estimates, PSNR = 10dB.

Fig. 5. Histograms of the distributions of estimated angles for the single angle data - azimuth angles 70–75 and elevation angles 30–35.
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(a) Azimuth estimates, PSNR = 30dB.
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(b) Azimuth estimates, PSNR = 20dB.
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(c) Azimuth estimates, PSNR = 10dB.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Elevation (deg.)

  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e 

(%
)

(d) Elevation estimates, PSNR = 30dB.
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(e) Elevation estimates, PSNR = 20dB.
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(f) Elevation estimates, PSNR = 10dB.

Fig. 6. Histograms of the distributions of estimated angles for the double angle data - azimuth angles 70–75 & 150–155 and elevation angles 30–35 &
110–115.
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(b) Colour key. (c) Estimates of aligned structures.
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(d) Azimuth estimates, random.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Azimuth (deg.)

  0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Fr
eq

ue
nc
y 
of
 O
cc
ur
re
nc
e 
(%

)

(e) Azimuth estimates, aligned.
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(f) Elevation estimates, random.
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(g) Elevation estimates, random.

Fig. 7. Results for real fibrous scaffold data from [10]. (a) The estimated orientations for the random structure dataset. (b) The colour key for elevation and
azimuth combinations. (c) The estimated orientations for the aligned structure dataset. (d) and (f) the distributions of the estimated azimuth and elevation angles,
respectively, for the random structures. (e) and (g) The distributions of the estimated azimuth and elevation angles, respectively, for the aligned structures.
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