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Introduction
Motivation
Delay Estimation Problem

Delay Estimation

Delay Between 2 or More Spatially Separated Sensors

Communications Sonar
Delay between mobile Delay between sensors
and base stations gives represents direction of

location arrival

@)

@

»

Radar Biology
Delay receiving reflection Delay between sensors
of transmitted pulse represents conduction
gives range velocity

Wide Range of Different Applications
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Introduction
Motivation
Delay Estimation Problem

Time-Varying Delay Estimation

The problem:
m z1(t) and x2(t) are the signals at
each sensor at time ¢

x1(t) = f(t) +ex(t) m f(t) is the signal of interest
z2(t) = f(t —7(t)) + e2(t) m 7(t) is the time-varying delay
m ¢(t) are additive Gaussian noises
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Time-Varying Delay Estimation

The problem:
m z1(t) and x2(t) are the signals at
each sensor at time ¢

x1(t) = f(t) +ex(t) m f(t) is the signal of interest
z2(t) = f(t —7(t)) + e2(t) m 7(t) is the time-varying delay
m ¢(t) are additive Gaussian noises

Requirements:

% Robust
% Accurate
3 Real time operation
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Time-Varying Delay Estimation

The problem:
m z1(t) and x2(t) are the signals at
each sensor at time ¢

x1(t) = f(t) +ex(t) m f(t) is the signal of interest
z2(t) = f(t —7(t)) + e2(t) m 7(t) is the time-varying delay
m ¢(t) are additive Gaussian noises

Local
All-Pass Filter

Our Previous Solution:

% Robust v
% Accurate V' \[\r \N
% Real-time operation

Signal 1 Signal 2

Delay can be estimated from local all-pass (LAP) filter
Need a real-time solution
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Local All-Pass Filters LAP Framework
Multiscale LAP

All-Pass Filters

m Frequency response

m p real digital filter
m P (/) is forward filter
m P (e77*) is backward version

m Filtering operation

x2[k] = hlk] x z1[k] <= pl[—k] * x2[k] = p[k] * z1[k]

m k denotes discrete time

m All-pass filter can be obtained by estimating p[k]

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA  20th November 2019 5 / 19



Local All-Pass Filters LAP Framework
Multiscale LAP

LAP Framework

Inputs:

m Data - signals from different

sensors
m w - window size of the local W J\/\/

region W \R, W \J\ \\JW
m M - size of the filter basis signal 1 Signal 2
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Local All-Pass Filters LAP Framework
Mult le LAP

LAP Framework

Estimating the filter:
m For current time t; select the local region W

m Solve the following minimisation:

it 3 [pupp k] # 21[K] — pappl k]« 2a[8]]
kew

m c - coefficient of the filter basis
B Dapp - filter basis approximation of p

m In this case Gaussian & first derivative

Papp[k] = o k?/20% | o omk? /207

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA  20th November 2019 6 / 19



Local All-Pass Filters LAP Framework
Multiscale LAP

LAP Framework

Estimating the delay:
m Extracted from the impulse response papp

2 kpapo[K]
21, Papp K]

Test = 2

m Repeated for each time sample &
m w defines the time over which the delay is assumed constant
m M defines the maximum size of delay
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Local All-Pass Filters LAP Framework
Mult LAP

LAP Framework

Fast & efficient to estimate delays

Large delays require large filters

Large filters require large windows
Wynin = 2M + 1

m Equivalent to assuming large delays slowly varying
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Local All-Pass Filters LAP Framework
Multiscale LAP

LAP Framework

Fast & efficient to estimate delays

Large delays require large filters

Large filters require large windows
Wynin = 2M + 1
m Equivalent to assuming large delays slowly varying

Larger windows 3~ more accurate delay estimation
Larger windows 3~ restrict the amount of time-variation in the delay
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Local All-Pass Filters LAP Fram
Multiscale

Multiscale LAP

T
m
T

m

Tt

No Yes -_’ T,

Implements several different values of M sequentially
First uses the largest value of M to estimate the delay
Uses estimate to warp delayed signal closer to original signal

Repeats with the next value of M
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Local All-Pass Filters LAP Framework
Multiscale LAP

Multiscale LAP

T
m
T

m

Tt

No Yes -_’ T,

Implements several different values of M sequentially
First uses the largest value of M to estimate the delay
Uses estimate to warp delayed signal closer to original signal

Repeats with the next value of M

Enables estimation of both quickly and slowly varying delays
Requires the entire signal before processing
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

LAP 4+ Kalman Filter

Test[k]

Yes

m Single scale LAP estimates per sample delay
m Requires only the samples in the local region W
m M can be chosen based on prior knowledge

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA  20th November 2019



Kalman Filter
LAP + Kalman Kalman Filter Fusion

LAP 4+ Kalman Filter

Test[k]

Yes

m Single scale LAP estimates per sample delay
m Requires only the samples in the local region W
m M can be chosen based on prior knowledge

Choice of w

m Want maximum possible variation

m Maintain accuracy
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

LAP 4+ Kalman Filter

Test[k]

Yes

m Single scale LAP estimates per sample delay
m Requires only the samples in the local region W
m M can be chosen based on prior knowledge

m Want maximum possible variation

m Maintain accuracy

Kalman Filter
m Assume output of the LAP is a noisy version of the true delay

m Use Kalman filter to model the structure of the delay & the noise
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LAP + Kalman

Kalman Filter Model

Kalman Filter
Kalman Filter Fusion

State vector:

m Based on the LAP estimate of
the delay, T ap

Tk
TE= | Tk

Transition matrix:

m For a given sampling period At

1 At At?)2
A, =10 1 At
0 O 1

Jelfs and Gilliam

Delay Estimation using LAP & Kalman Filters

Process:

m Governed by the following
equations:

T =ApTr—1 + ug

TLap, =CrTr + vk

m u and v independent Gaussian
noise processes

Measurement matrix:

Cr=(1 0 0)
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

Kalman Filter Updates

Prediction Updates: Correction Updates:
m Prior state estimate m State update
Trik—1 = AkTr-1 Tk = Tijp—1+K (1Lap, —CrTrjk—1)
m Prior state error covariance m State error covariance update
Pyjp—1 = AxP AL + Qi Py = (I — KCy) Py

m () - process noise covariance

Kalman Gain:
m Update

~1
K = Py—10} (CrPyp—1CL + Ry)

m R - measurement noise covariances
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

LAP 4+ Kalman Fusion

o] ]RS-S

! = No

LAP + Kalman Filter:
m Allows short window lengths without loss of accuracy
m Still limited by the size of the half support of the LAP filter
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

LAP 4+ Kalman Fusion

o] ]RS-S

! = No

LAP + Kalman Filter:

m Allows short window lengths without loss of accuracy

m Still limited by the size of the half support of the LAP filter
LAP + Kalman Filter Fusion:

m Different values of M implemented separately

m Can be implemented in parallel &~ fast & efficient computation
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Kalman Filter
LAP + Kalman Kalman Filter Fusion

Kalman Filter Fusion

State vector fusion: Measurement fusion:
m Produces filtered state vectors m Combines the measurements
m Combines to give an updated m Then updates the state vector
estimate

Measurement fusion preferable & can be obtained by:

m Augmenting the observation m Weighting the observations
vector

Equivalent for identical measurement matrices 3~ We have implemented
an augmented observation:

TLAP,, = [TLlAPk . ..Tﬁpk}T
c.=[ct...cM’”
Ry =diag [R, ... R},

where N is the number of LAP filters to be fused.
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Comparison with Multiscale LAP
S h
Results

Synthetic Data

1st Channel:
White Gaussian noise
filtered using FIR
filter with known
spectral properties
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Comparison with Multiscale LAP
Speech
Results

Synthetic Data

1st Channel: Each channel
White Gaussian noise 2nd Channel: corrupted by Gaussian
filtered using FIR ~ — Generated via noise
filter with known interpolation using shaped by FIR filter
spectral properties 7(t) to simulate

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters

acquisition device
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Comparison with Multiscale LAP

Speech
Results

Synthetic Data

1st Channel:

White Gaussian noise 2nd Channel:
filtered using FIR ~ — Generated via
filter with known interpolation using
spectral properties 7(t)

m Generate 5 seconds of synthetic data
m Sampling rate F; = 2048Hz

mw=2M + 1 in all simulations

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters

Each channel
corrupted by Gaussian
noise
shaped by FIR filter
to simulate
acquisition device
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Comparison with Multiscale LAP

Results

Comparison of LAP & LAP + Kalman

Single scale LAP algorithm with M = 8 and the LAP + Kalman filter

10 dB SNR

Delay (samples)

2 25 3
‘Time (seconds)

Delay (samples)

LAP + Kalman gives a smoother estimate of the delay
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Comparison with Multiscale LAP
S h
Results

Multiscale LAP Comparison

1 T T T T
7 ! L kaman|| ® Multiscale LAP:
ELOB r $ Multiscale LAP|T s M= {27 47 8}
go.e I ] mw=>512
£ m LAP & LAP + Kalman
% 04r % { . . M —3
=P i mw=17
a 0.2 i & 3 P
° . . m Average mean absolute error
0 L L . . .
10dB 20dB 30dB  Noiseless obtained from 100 realisations
Noise Level
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Comparison with Multiscale LAP
Speech
Results

Multiscale LAP Comparison

1 T T T T

7 ! L kaman|| ® Multiscale LAP:

ELOAB r $ Multiscale LAP|T s M= {27 47 8}

84l = w=512

£ m LAP & LAP + Kalman

% 04r % { . . M —3

=P mw=17

a 0.2 i & 3 P
° . . m Average mean absolute error

10dB 20dB 30dB  Noiseless obtained from 100 realisations

Noise Level

m Computation time - to Computation  Latency

process 5 seconds of data Time (ms) (ms)
m Latency - time taken to LAP 2.9 8.3
provide an estimate of the LAP + Kalman 34.5 8.3

t del
current defay Multiscale LAP 35.9 5000.0
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omparison with Multiscale LAP

Results

m Real world speech signal and introduce a known delay

m Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)

m Linearly decreasing delay from 8 samples to 1.5 samples until 3500
samples

m Constant for the remaining samples

u.)

Amplitude (a
}%
————

=
E—=
=
=
=
=
2
—
Delay (Samples)

. . . . h . . . . | .
o 100 200 300 400 500 600 o 100 200 300 400 500 600
Time (ms) Time (ms)
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m Real world speech signal and introduce a known delay

m Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)

m Linearly decreasing delay from 8 samples to 1.5 samples until 3500

samples

m Constant for the remaining samples

50-150ms 3~ delays of 7.2-5.7 samples
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ison with Multiscale LAP

Results

m Real world speech signal and introduce a known delay

m Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)

m Linearly decreasing delay from 8 samples to 1.5 samples until 3500
samples

m Constant for the remaining samples

500-600ms 3~ constant delay of 1.5 samples

5 T T T T T T T

——Delayed
% V Y ~ \‘ | v\{ ”
gof g‘fw u’\/«* [\ WU\"’“'U‘K [9,“ m ' M M‘fw w
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Comparison with Multiscale LAP
Speech
Results

Filter Fusion Results

Estimation problem is not straightforward

Mean Absolute Errors
LAP LAP + Kalman

m Speech signal is non-stationary

m Several different frequency

Mm=s8 1.001 0.408

t
components M=16  0.620 0.509
m Non-constant delay fused _ 0.310

M=16 [
- - Fused

Delay (Samples)
IS

I I I I I
0 100 200 300 400 500 600
Time (ms)

Larger errors & Small amplitude of signal
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Conclusions

LAP + Kalman Filter
m Solution provides small errors and accurate tracking of delay

m Results not as accurate as multiscale framework

m Lower latency & capable of working in real-time

LAP+ Kalman Filter Fusion

m Combine multiple single scale LAP filters

m Better estimates than individual filters

m Different scales can be implemented in parallel
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The End

Thank you for listening
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