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Delay Estimation

Communications
Delay between mobile

and base stations gives

location

Radar
Delay receiving reflection

of transmitted pulse

gives range

Sonar
Delay between sensors

represents direction of

arrival

Biology
Delay between sensors

represents conduction

velocity

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 3 / 19

Delay Between 2 or More Spatially Separated Sensors

Wide Range of Different Applications
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Time-Varying Delay Estimation

The problem:

x1(t) = f(t) + e1(t)

x2(t) = f
(

t− τ(t)
)

+ e2(t)

x1(t) and x2(t) are the signals at
each sensor at time t

f(t) is the signal of interest

τ(t) is the time-varying delay

e(t) are additive Gaussian noises
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Time-Varying Delay Estimation

The problem:

x1(t) = f(t) + e1(t)

x2(t) = f
(

t− τ(t)
)

+ e2(t)

x1(t) and x2(t) are the signals at
each sensor at time t

f(t) is the signal of interest

τ(t) is the time-varying delay

e(t) are additive Gaussian noises

Requirements:

# Robust
# Accurate
# Real time operation

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 4 / 19



Introduction
Local All-Pass Filters

LAP + Kalman
Results

Motivation
Delay Estimation Problem

Time-Varying Delay Estimation

The problem:

x1(t) = f(t) + e1(t)

x2(t) = f
(

t− τ(t)
)

+ e2(t)

x1(t) and x2(t) are the signals at
each sensor at time t

f(t) is the signal of interest

τ(t) is the time-varying delay

e(t) are additive Gaussian noises

Our Previous Solution:

# Robust X
# Accurate X

# Real-time operation
Signal 1 Signal 2

Local
All-Pass Filter
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Motivation
Delay Estimation Problem

Time-Varying Delay Estimation

The problem:

x1(t) = f(t) + e1(t)

x2(t) = f
(

t− τ(t)
)

+ e2(t)

x1(t) and x2(t) are the signals at
each sensor at time t

f(t) is the signal of interest

τ(t) is the time-varying delay

e(t) are additive Gaussian noises

Our Previous Solution:

# Robust X
# Accurate X

# Real-time operation
Signal 1 Signal 2

Local
All-Pass Filter

Delay can be estimated from local all-pass (LAP) filter
Need a real-time solution
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All-Pass Filters

Frequency response

H(ω) =
P
(

ejω
)

P (e−jω)

p real digital filter
P
(

e
jω
)

is forward filter
P
(

e
−jω

)

is backward version

Filtering operation

x2[k] = h[k] ∗ x1[k] ⇐⇒ p[−k] ∗ x2[k] = p[k] ∗ x1[k]

k denotes discrete time

All-pass filter can be obtained by estimating p[k]
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LAP Framework

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k
τ
est

[k]

k = 1

Data In,
w, M

Estimate

Delay

Stop

Inputs:

Data - signals from different
sensors

w - window size of the local
region W

M - size of the filter basis Signal 1 Signal 2

Local
All-Pass Filter
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LAP Framework

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k
τ
est

[k]

k = 1

Data In,
w, M

Estimate

Delay

Stop

Estimating the filter:

For current time tk select the local region W

Solve the following minimisation:

min
c

∑

k∈W

∣

∣

∣papp[k] ∗ x1[k]− papp[−k] ∗ x2[k]
∣

∣

∣

2

c - coefficient of the filter basis
papp - filter basis approximation of p

In this case Gaussian & first derivative

papp[k] = e−k2/2σ2

+ c k e−k2/2σ2
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LAP Framework

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k
τ
est

[k]

k = 1

Data In,
w, M

Estimate

Delay

Stop

Estimating the delay:

Extracted from the impulse response papp

τest = 2

∑

k kpapp[k]
∑

k papp[k]

Repeated for each time sample k

w defines the time over which the delay is assumed constant

M defines the maximum size of delay
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LAP Framework
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LAP Framework

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k
τ
est

[k]

k = 1

Data In,
w, M

Estimate

Delay

Stop

Fast & efficient to estimate delays

Large delays require large filters

Large filters require large windows

wmin = 2M + 1

Equivalent to assuming large delays slowly varying
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LAP Framework

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k
τ
est

[k]

k = 1

Data In,
w, M

Estimate

Delay

Stop

Fast & efficient to estimate delays

Large delays require large filters

Large filters require large windows

wmin = 2M + 1

Equivalent to assuming large delays slowly varying

Larger windows # more accurate delay estimation
Larger windows # restrict the amount of time-variation in the delay
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Multiscale LAP

Single Scale

LAP
Alignment

Process

Yes
m=end?

No
Stop

+

τm

∆τ

τ +1m

m = m+1

τm

Post

Processing

τ
est

m = 1
Data In, Datam 

w   ,m Mm

Implements several different values of M sequentially

First uses the largest value of M to estimate the delay

Uses estimate to warp delayed signal closer to original signal

Repeats with the next value of M
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Multiscale LAP

Multiscale LAP

Single Scale

LAP
Alignment

Process

Yes
m=end?

No
Stop

+

τm

∆τ

τ +1m

m = m+1

τm

Post

Processing

τ
est

m = 1
Data In, Datam 

w   ,m Mm

Implements several different values of M sequentially

First uses the largest value of M to estimate the delay

Uses estimate to warp delayed signal closer to original signal

Repeats with the next value of M

Enables estimation of both quickly and slowly varying delays
Requires the entire signal before processing

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 7 / 19



Introduction
Local All-Pass Filters

LAP + Kalman
Results

Kalman Filter
Kalman Filter Fusion

LAP + Kalman Filter

τ
est

[k]
Kalman

Filter

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  kk = 1

Data In,
w, M

Estimate

Delay

Stop

Single scale LAP estimates per sample delay
Requires only the samples in the local region W

M can be chosen based on prior knowledge

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 8 / 19



Introduction
Local All-Pass Filters

LAP + Kalman
Results

Kalman Filter
Kalman Filter Fusion

LAP + Kalman Filter

τ
est

[k]
Kalman

Filter

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  kk = 1

Data In,
w, M

Estimate

Delay

Stop

Single scale LAP estimates per sample delay
Requires only the samples in the local region W

M can be chosen based on prior knowledge

Choice of w

Want maximum possible variation

Maintain accuracy
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LAP + Kalman Filter

τ
est

[k]
Kalman

Filter

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  kk = 1

Data In,
w, M

Estimate

Delay

Stop

Single scale LAP estimates per sample delay
Requires only the samples in the local region W

M can be chosen based on prior knowledge

Choice of w

Want maximum possible variation

Maintain accuracy

Kalman Filter

Assume output of the LAP is a noisy version of the true delay

Use Kalman filter to model the structure of the delay & the noise
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Kalman Filter
Kalman Filter Fusion

Kalman Filter Model

State vector:

Based on the LAP estimate of
the delay, τLAP

τ k =





τk
τ̇k
τ̈k





Process:

Governed by the following
equations:

τ k =Akτ k−1 + uk

τLAPk
=Ckτ k + vk

u and v independent Gaussian
noise processes

Transition matrix:

For a given sampling period ∆t

Ak =





1 ∆t ∆t2/2
0 1 ∆t
0 0 1





Measurement matrix:

Ck =
(

1 0 0
)
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Kalman Filter
Kalman Filter Fusion

Kalman Filter Updates

Prediction Updates:

Prior state estimate

τ k|k−1 = Akτ k−1

Prior state error covariance

Pk|k−1 = AkPkA
T
k +Qk

Q - process noise covariance

Correction Updates:

State update

τ k = τ k|k−1+K
(

τLAPk
−Ckτ k|k−1

)

State error covariance update

Pk = (I −KCk)Pk|k−1

Kalman Gain:

Update

K = Pk|k−1C
T
k

(

CkPk|k−1C
T
k +Rk

)−1

R - measurement noise covariances
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Kalman Filter
Kalman Filter Fusion

LAP + Kalman Fusion

w  ,1 M1

k = 1

Data In,
τ
est

[k]
Kalman

Filter

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k

Estimate

Delay

Stop

w  ,2 M2

Estimate Local

All-Pass Filter
Select Local

Window, t  k

Estimate

Delay

w   ,N MN

Estimate Local

All-Pass Filter
Select Local

Window, t  k

Estimate

Delay

LAP + Kalman Filter:

Allows short window lengths without loss of accuracy

Still limited by the size of the half support of the LAP filter
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LAP + Kalman Fusion

w  ,1 M1

k = 1

Data In,
τ
est

[k]
Kalman

Filter

k = k+1
Yes

k=end?

Estimate Local

All-Pass Filter

No

Select Local

Window, t  k

Estimate

Delay

Stop

w  ,2 M2

Estimate Local

All-Pass Filter
Select Local

Window, t  k

Estimate

Delay

w   ,N MN

Estimate Local

All-Pass Filter
Select Local

Window, t  k

Estimate

Delay

LAP + Kalman Filter:

Allows short window lengths without loss of accuracy

Still limited by the size of the half support of the LAP filter

LAP + Kalman Filter Fusion:

Different values of M implemented separately

Can be implemented in parallel # fast & efficient computation
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Kalman Filter Fusion

State vector fusion:

Produces filtered state vectors

Combines to give an updated
estimate

Measurement fusion:

Combines the measurements

Then updates the state vector

Measurement fusion preferable & can be obtained by:

Augmenting the observation
vector

Weighting the observations

Equivalent for identical measurement matrices # We have implemented
an augmented observation:

τLAPk
=
[

τ1LAPk
. . . τNLAPk

]T

Ck =
[

C1
k . . . C

N
k

]T

Rk =diag
[

R1
k . . . R

N
k

]

,

where N is the number of LAP filters to be fused.
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Synthetic Data

1st Channel:
White Gaussian noise
filtered using FIR
filter with known
spectral properties
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1st Channel:
White Gaussian noise
filtered using FIR
filter with known
spectral properties

⇒

2nd Channel:
Generated via

interpolation using
τ(t)

⇒

Each channel
corrupted by Gaussian

noise
shaped by FIR filter

to simulate
acquisition device
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Comparison with Multiscale LAP
Speech

Synthetic Data

1st Channel:
White Gaussian noise
filtered using FIR
filter with known
spectral properties

⇒

2nd Channel:
Generated via

interpolation using
τ(t)

⇒

Each channel
corrupted by Gaussian

noise
shaped by FIR filter

to simulate
acquisition device

Generate 5 seconds of synthetic data

Sampling rate Fs = 2048Hz

w = 2M + 1 in all simulations
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Comparison of LAP & LAP + Kalman

Single scale LAP algorithm with M = 8 and the LAP + Kalman filter

10 dB SNR
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30 dB SNR
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LAP + Kalman gives a smoother estimate of the delay
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Multiscale LAP Comparison

10dB 20dB 30dB Noiseless
Noise Level
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Multiscale LAP

Multiscale LAP:

M = {2, 4, 8}
w = 512

LAP & LAP + Kalman

M = 8

w = 17

Average mean absolute error
obtained from 100 realisations
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Multiscale LAP:

M = {2, 4, 8}
w = 512

LAP & LAP + Kalman

M = 8

w = 17

Average mean absolute error
obtained from 100 realisations

Computation time - to
process 5 seconds of data

Latency - time taken to
provide an estimate of the
current delay

Computation Latency

Time (ms) (ms)

LAP 2.9 8.3

LAP + Kalman 34.5 8.3

Multiscale LAP 35.9 5000.0
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Speech

Real world speech signal and introduce a known delay
Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)
Linearly decreasing delay from 8 samples to 1.5 samples until 3500
samples
Constant for the remaining samples
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Speech

Real world speech signal and introduce a known delay
Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)
Linearly decreasing delay from 8 samples to 1.5 samples until 3500
samples
Constant for the remaining samples

50–150ms # delays of 7.2–5.7 samples

50 60 70 80 90 100 110 120 130 140 150
Time (ms)

-4

-2

0

2

4

A
m

pl
itu

de
 (

a.
u.

)

Original
Delayed

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 16 / 19



Introduction
Local All-Pass Filters

LAP + Kalman
Results

Comparison with Multiscale LAP
Speech

Speech

Real world speech signal and introduce a known delay
Short 610.4ms speech signal with 5000 samples (sampling rate of
8192Hz)
Linearly decreasing delay from 8 samples to 1.5 samples until 3500
samples
Constant for the remaining samples

500–600ms # constant delay of 1.5 samples
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Comparison with Multiscale LAP
Speech

Filter Fusion Results

Estimation problem is not straightforward

Speech signal is non-stationary

Several different frequency
components

Non-constant delay

Mean Absolute Errors

LAP LAP + Kalman

M=8 1.001 0.408
M=16 0.620 0.509
fused – 0.310
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M = 8
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Fused

Larger errors # Small amplitude of signal
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Conclusions

LAP + Kalman Filter

Solution provides small errors and accurate tracking of delay

Results not as accurate as multiscale framework

Lower latency # capable of working in real-time

LAP+ Kalman Filter Fusion

Combine multiple single scale LAP filters

Better estimates than individual filters

Different scales can be implemented in parallel

Jelfs and Gilliam Delay Estimation using LAP & Kalman Filters APSIPA 20th November 2019 18 / 19



Introduction
Local All-Pass Filters

LAP + Kalman
Results

The End

Thank you for listening
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