Estimating Muscle Fibre Conduction Velocity in the Presence of Array Misalignment

Christopher Gilliam and Beth Jelfs

SIGNAL Lab, Melbourne, Australia & School of Engineering, RMIT University, Australia

14th November 2018

Outline

- Introduction
 - Conduction Velocity in Surface Electromyography (sEMG)
 - Conduction Velocity as Time-Varying Delay
 - Estimate Delay Using Local All-Pass Filters
- 2 Rotation of CLAP to Address Array Misalignment
- **3** Modelling High Density Surface EMG
 - MUAP Model
 - Weighted Velocity
- 4 Evaluation Results
 - Fixed Conduction Velocity
 - Time-Varying Conduction Velocity
- 5 Conclusions

Conduction Velocity Delay Estimation Common LAP

High Density Surface EMG (HD-sEMG)

 Typically sEMG is recorded with bipolar electrodes

Conduction Veloci Delay Estimation Common LAP

High Density Surface EMG (HD-sEMG)

- Typically sEMG is recorded with bipolar electrodes
- Recent developments allow for high density recording arrays

1 1 1 1	
1 1 1 1	
1 1 1 1	
0.000	

Conduction Velocity Delay Estimation Common LAP

High Density Surface EMG (HD-sEMG)

- Typically sEMG is recorded with bipolar electrodes
- Recent developments allow for high density recording arrays
- HD-sEMG provides spatial information otherwise unavailable

Conduction Velocity Delay Estimation Common LAP

Conduction Velocity

One such property is the muscle fibre conduction velocity

C 111				
	liama.	and	10	alte.
0.0	nam	anu		

Conduction Velocity Delay Estimation Common LAP

Conduction Velocity

Describes the speed of propagation of motor unit action potentials (MUAPs) along the muscle

Gilliam and Jelfs

Estimating MFCV in Array Misalignment

Conduction Velocity Delay Estimation Common LAP

Conduction Velocity

Describes the speed of propagation of motor unit action potentials $({\sf MUAPs})$ along the muscle

Gilliam and Jelfs

Estimating MFCV in Array Misalignment

Conduction Velocity Delay Estimation Common LAP

Conduction Velocity

Describes the speed of propagation of motor unit action potentials (MUAPs) along the muscle

Gilliam and Jelfs

Estimating MFCV in Array Misalignment

APSIPA 14th November 2018 4 / 16

Conduction Velocity Delay Estimation Common LAP

Conduction Velocity

\hookrightarrow Important factor in the study of muscle pathology, fatigue or pain

Conduction Velocity Delay Estimation Common LAP

Estimating Conduction Velocity from sEMG

Conduction Velocity Delay Estimation Common LAP

Estimating Conduction Velocity from sEMG

Conduction Velocity Delay Estimation Common LAP

Estimating a common time-varying delay

Common Local All-Pass (CLAP) algorithm:

Assume delay is constant within a local region \Rightarrow Local All-Pass Filters \hookrightarrow Per sample estimate of the time-varying delay \Leftrightarrow Robust and very accurate

C. Gilliam et al., 'Time-Varying Delay Estimation using Common Local All-Pass Filters with Application to Surface Electromyography', ICASSP 2018

Gill	liam anc	letts

Array Misalignment Problem

In a perfect world

Array is aligned with the muscle fibre $\label{eq:tau} \hookrightarrow \ \tau(t) = \tau_{\rm col}(t)$

Array Misalignment Problem

In a perfect world

Array is aligned with the muscle fibre $\label{eq:tau} \hookrightarrow \ \tau(t) = \tau_{\rm col}(t)$

But...

Requires very careful placement of array \hookrightarrow Impractical

Array Misalignment Problem

Misalignment Example

In reality...

Array and muscle fibre misalignment

$$\tau(t) = \tau_{col}(t) + j\tau_{row}(t)$$
$$= |\tau(t)| (\cos\theta + j\sin\theta)$$

Array Misalignment Problem

Misalignment Example

In reality...

Array and muscle fibre misalignment

 $\begin{aligned} \tau(t) &= \tau_{\rm col}(t) + j\tau_{\rm row}(t) \\ &= |\tau(t)| \left(\cos\theta + j\sin\theta\right) \end{aligned}$

Delay along the columns Underestimates Delay

Overestimates Conduction Velocity

Parametric Estimation of Array Misalignment

Parametric model:

$$|\tau(t)| \left(\cos \theta + j \sin \theta\right) = \tau_{\rm col}(t) + j \tau_{\rm row}(t)$$

 $\ \, \hookrightarrow \ \, \text{Misalignment angle constant in time}$

Parametric Estimation of Array Misalignment

Parametric model:

$$|\tau(t)|\left(\cos\theta + j\sin\theta\right) = \tau_{\rm col}(t) + j\tau_{\rm row}(t)$$

Our approach:

- **1** Estimate delays $\tau_{col}(t)$ and $\tau_{row}(t)$
- 2 Calculate rotation using circular mean $\Delta \theta = \arg\left(\sum_t \tau_{\rm col}(t) + j\tau_{\rm row}(t)\right)$
- **3** Update current estimate of θ
- 4 Correct data using the rotation

Parametric Estimation of Array Misalignment

Iterative framework:

- Perform rotation estimation and correct data
- 2 Repeat process to refine angle estimate $\theta_{\rm est}$
- Perform CLAP estimation along columns of corrected data

MUAP Model Weighted Velocity

sEMG Model

 \hookrightarrow To test the proposed approach a model of sEMG as a combination of action potentials from many motor units was used

Muscle surface

Muscle volume

- MUAPs observed by an electrode depend upon
 - Size of the MU (number of fibres)
 - Size & shape of electrodes
 - Distance of electrode from innervation zone
 - Distance of MU from electrode

D. Farina & R. Merletti, 'A novel approach for precise simulation of the EMG signal detected by surface electrodes', IEEE Trans. Biomed.

Gilliam and Jelfs

APSIPA 14th November 2018 9 / 16

Rotational CLAP HD-sEMG Model Results

MUAP Model Weighted Velocity

Modelling Array Misalignment

Array misalignment changes the relationship between electrodes and the $$\rm MUs$$

Muscle surface

Muscle volume

Gilliam and Jelfs

MUAP Model Weighted Velocity

Weighted Conduction Velocity

- MU areas are determined by the number of fibres & fibre density
- MUs with larger area have a faster conduction velocity

MUAP Model Weighted Velocity

Weighted Conduction Velocity

MU areas are determined by the number of fibres & fibre densityMUs with larger area have a faster conduction velocity

- Conduction velocities of MUs are drawn from Gaussian distribution
- Distribution becomes skewed due to larger number of fibres belonging faster motor units

MUAP Model Weighted Velocity

Weighted Conduction Velocity

MU areas are determined by the number of fibres & fibre densityMUs with larger area have a faster conduction velocity

- Conduction velocities of MUs are drawn from Gaussian distribution
- Distribution becomes skewed due to larger number of fibres belonging faster motor units

Weighted Conduction Velocity

To account for this a weighted CV is used

MUAP Model Weighted Velocity

Weighted Conduction Velocity

MU areas are determined by the number of fibres & fibre densityMUs with larger area have a faster conduction velocity

- Conduction velocities of MUs are drawn from Gaussian distribution
- Distribution becomes skewed due to larger number of fibres belonging faster motor units

Weighted Conduction Velocity

To account for this a weighted CV is used

- The total energy E is the summation of the energies of all MUs
- The energy e_i is the energy of the signals from MU i
- Giving the weighted CV

$$wCV = CV_1\frac{e_1}{E} + CV_2\frac{e_2}{E} + \dots$$

Fixed CV Time-Varying CV

Fixed Conduction Velocity

Simulation Scenario

- Each MU has a fixed muscle fibre conduction velocity
- \blacksquare CVs are drawn from Gaussian distribution with $\mu=4$ m/s and $\sigma=0.3$ m/s
- Weighted CV used as an ensemble measure of the CV observed by the sEMG
- \blacksquare Misalignment angle is increased from 0 to 30°

Fixed CV Time-Varying CV

Fixed Conduction Velocity

Simulation Scenario

- Each MU has a fixed muscle fibre conduction velocity
- \blacksquare CVs are drawn from Gaussian distribution with $\mu=4$ m/s and $\sigma=0.3$ m/s
- Weighted CV used as an ensemble measure of the CV observed by the sEMG

\blacksquare Misalignment angle is increased from 0 to 30°

Fixed CV Time-Varying CV

Fixed Conduction Velocity

Results

- Estimates were accurate and robust
- Errors were relatively consistent across the different misalignment angles.
- The average mean absolute error was consistent across angles
- 95% of the estimates have an error of less than 2° .

Fixed CV Time-Varying CV

Time-Varying Conduction Velocity

Purpose of CLAP algorithm is to estimate time-varying delays

Fixed CV Time-Varying CV

Time-Varying Conduction Velocity

Purpose of CLAP algorithm is to estimate time-varying delays

Time-Varying Scenario

- \blacksquare Initial distribution: $\mu=5~{\rm m/s}$ and $\sigma=0.3~{\rm m/s}$
- Final distribution: $\mu = 3 \text{ m/s}$ and $\sigma = 0.7 \text{ m/s}$

Fixed CV Time-Varying CV

Time-Varying Conduction Velocity

Purpose of CLAP algorithm is to estimate time-varying delays

Time-Varying Scenario

- \blacksquare Initial distribution: $\mu=5~{\rm m/s}$ and $\sigma=0.3~{\rm m/s}$
- Final distribution: $\mu = 3 \text{ m/s}$ and $\sigma = 0.7 \text{ m/s}$

Gilliam and Jelfs

Fixed CV Time-Varying CV

Time-Varying CV with Array Misalignment

Now we add array misalignment to the time-varying CV estimation

Fixed CV Time-Varying CV

Time-Varying CV with Array Misalignment

Now we add array misalignment to the time-varying CV estimation

Results

- Average errors & angle estimates consistent across different misalignment angles
- Slightly higher errors than for the fixed MFCV
- Average angle errors less than 1°

Conclusions

- Muscle fibre conduction velocity estimation
 - Can be modelled as a TVD
 - Need to accurately place electrodes for sEMG recordings is a limitation
- Our approach
 - An extension of our earlier work for estimating MFCV
 - Allows misalignment between muscle fibres & electrode array
 - Models the misalignment as a rotation of the array
 - Iteratively fits the misalignment angle
- Practical solution to MFCV estimation
 - Estimates misalignment angle & delay in the direction of the fibres
 - Accurately estimates MFCV without perfect alignment of the array with the muscle fibre
- Future Work
 - Apply a parametric iterative fitting to improve the delay estimation

The End

Thank you for listening